Yang-baxter Equations, Conformal Invariance And Integrability In Statistical Mechanics And Field Theory - Proceedings Of A Conference

Yang-baxter Equations, Conformal Invariance And Integrability In Statistical Mechanics And Field Theory - Proceedings Of A Conference PDF Author: Barber Michael N
Publisher: #N/A
ISBN: 981469682X
Category : Canberra, Australia
Languages : en
Pages : 426

Get Book Here

Book Description

Yang-baxter Equations, Conformal Invariance And Integrability In Statistical Mechanics And Field Theory - Proceedings Of A Conference

Yang-baxter Equations, Conformal Invariance And Integrability In Statistical Mechanics And Field Theory - Proceedings Of A Conference PDF Author: Barber Michael N
Publisher: #N/A
ISBN: 981469682X
Category : Canberra, Australia
Languages : en
Pages : 426

Get Book Here

Book Description


Yang-baxter Equation In Integrable Systems

Yang-baxter Equation In Integrable Systems PDF Author: Michio Jimbo
Publisher: World Scientific
ISBN: 9814507067
Category : Science
Languages : en
Pages : 727

Get Book Here

Book Description
This volume will be the first reference book devoted specially to the Yang-Baxter equation. The subject relates to broad areas including solvable models in statistical mechanics, factorized S matrices, quantum inverse scattering method, quantum groups, knot theory and conformal field theory. The articles assembled here cover major works from the pioneering papers to classical Yang-Baxter equation, its quantization, variety of solutions, constructions and recent generalizations to higher genus solutions./a

Yang-Baxter Equation in Integrable Systems

Yang-Baxter Equation in Integrable Systems PDF Author: Michio Jimbo
Publisher: World Scientific
ISBN: 9789810201203
Category : Science
Languages : en
Pages : 740

Get Book Here

Book Description
This volume will be the first reference book devoted specially to the Yang-Baxter equation. The subject relates to broad areas including solvable models in statistical mechanics, factorized S matrices, quantum inverse scattering method, quantum groups, knot theory and conformal field theory. The articles assembled here cover major works from the pioneering papers to classical Yang-Baxter equation, its quantization, variety of solutions, constructions and recent generalizations to higher genus solutions.

Yang-baxter Equations In Paris - Proceedings Of The Conference

Yang-baxter Equations In Paris - Proceedings Of The Conference PDF Author: Jean-marie Maillard
Publisher: World Scientific
ISBN: 9814553239
Category :
Languages : en
Pages : 294

Get Book Here

Book Description


Exactly Solved Models in Statistical Mechanics

Exactly Solved Models in Statistical Mechanics PDF Author: Rodney J. Baxter
Publisher: Elsevier
ISBN: 1483265943
Category : Science
Languages : en
Pages : 499

Get Book Here

Book Description
Exactly Solved Models in Statistical Mechanics

Yang-Baxter Equations, Conformal Invariance and Integrability in Statistical Mechanics and Field Theory

Yang-Baxter Equations, Conformal Invariance and Integrability in Statistical Mechanics and Field Theory PDF Author: Michael N. Barber
Publisher:
ISBN: 9789814540964
Category : SCIENCE
Languages : en
Pages : 437

Get Book Here

Book Description


Symmetries and Integrability of Difference Equations

Symmetries and Integrability of Difference Equations PDF Author: Decio Levi
Publisher: American Mathematical Soc.
ISBN: 0821806017
Category : Mathematics
Languages : en
Pages : 402

Get Book Here

Book Description
This book is devoted to a topic that has undergone rapid and fruitful development over the last few years: symmetries and integrability of difference equations and q-difference equations and the theory of special functions that occur as solutions of such equations. Techniques that have been traditionally applied to solve linear and nonlinear differential equations are now being successfully adapted and applied to discrete equations. This volume is based on contributions made by leading experts in the field during the workshop on Symmetries and Integrability of Difference Equations held Estérel, Québec, in May 1994. Giving an up-to-date review of the current status of the field, the book treats these specific topics: Lie group and quantum group symmetries of difference and q-difference equations, integrable and nonintegrable discretizations of continuous integrable systems, integrability of difference equations, discrete Painlevé property and singularity confinement, integrable mappings, applications in statistical mechanics and field theories, Yang-Baxter equations, q-special functions and discrete polynomials, and q-difference integrable systems.

Differential Geometric Methods In Theoretical Physics - Proceedings Of The Xxi International Conference

Differential Geometric Methods In Theoretical Physics - Proceedings Of The Xxi International Conference PDF Author: Chen Ning Yang
Publisher: World Scientific
ISBN: 9814553778
Category :
Languages : en
Pages : 626

Get Book Here

Book Description
This volume contains intense studies on Quantum Groups, Knot Theory, Statistical Mechanics, Conformal Field Theory, Differential Geometry and Differential Equation Methods and so on. It has contributions by renowned experts and covers most of the recent developments in these fields.

Integrable Models

Integrable Models PDF Author: Ashok Das
Publisher: World Scientific
ISBN: 9814507385
Category : Science
Languages : en
Pages : 358

Get Book Here

Book Description


Geometric Analysis and Applications to Quantum Field Theory

Geometric Analysis and Applications to Quantum Field Theory PDF Author: Peter Bouwknegt
Publisher: Springer Science & Business Media
ISBN: 1461200679
Category : Mathematics
Languages : en
Pages : 213

Get Book Here

Book Description
In the last decade there has been an extraordinary confluence of ideas in mathematics and theoretical physics brought about by pioneering discoveries in geometry and analysis. The various chapters in this volume, treating the interface of geometric analysis and mathematical physics, represent current research interests. No suitable succinct account of the material is available elsewhere. Key topics include: * A self-contained derivation of the partition function of Chern- Simons gauge theory in the semiclassical approximation (D.H. Adams) * Algebraic and geometric aspects of the Knizhnik-Zamolodchikov equations in conformal field theory (P. Bouwknegt) * Application of the representation theory of loop groups to simple models in quantum field theory and to certain integrable systems (A.L. Carey and E. Langmann) * A study of variational methods in Hermitian geometry from the viewpoint of the critical points of action functionals together with physical backgrounds (A. Harris) * A review of monopoles in nonabelian gauge theories (M.K. Murray) * Exciting developments in quantum cohomology (Y. Ruan) * The physics origin of Seiberg-Witten equations in 4-manifold theory (S. Wu) Graduate students, mathematicians and mathematical physicists in the above-mentioned areas will benefit from the user-friendly introductory style of each chapter as well as the comprehensive bibliographies provided for each topic. Prerequisite knowledge is minimal since sufficient background material motivates each chapter.