Compatibilization of Polymer Blends

Compatibilization of Polymer Blends PDF Author: Ajitha A. R
Publisher: Elsevier
ISBN: 0128162880
Category : Technology & Engineering
Languages : en
Pages : 642

Get Book Here

Book Description
Compatibilization of Polymer Blends: Micro and Nano Scale Phase Morphologies, Interphase Characterization and Properties offers a comprehensive approach to the use of compatibilizers in polymer blends, examining both fundamental and advanced knowledge in the field. The book begins by introducing polymer blends, describing thermodynamics, miscibility, and phase separation, and explaining the main concepts of compatibilization. Other sections cover theoretical approaches for nearly compatible blends, incompatible blends, nanofillers, physical compatibilization, reactive compatibilization, morphological and structural characterization, and physico-mechanical characterization. Finally, key application areas are covered, including biomedical applications, packaging and automobile engineering. While this book will be a highly valuable reference source for academics, researchers and postgraduate students interested in polymer blends, it will also be ideal for anyone involved in the fields of polymer science, polymer chemistry, polymer physics, materials science, scientists, R&D professionals, and engineers in involved in the development or engineering of polymer products. - Offers detailed and systematic coverage of essential and advanced topics relating to the compatibilization of polymer blends - Presents a critical analysis of the effect of compatibilization on morphology and thermal, mechanical, electrical and viscoelastic properties of polymer blends - Draws on novel studies and state-of-the-art research, discussing the latest issues and developments

Compatibilization of Polymer Blends

Compatibilization of Polymer Blends PDF Author: Ajitha A. R
Publisher: Elsevier
ISBN: 0128162880
Category : Technology & Engineering
Languages : en
Pages : 642

Get Book Here

Book Description
Compatibilization of Polymer Blends: Micro and Nano Scale Phase Morphologies, Interphase Characterization and Properties offers a comprehensive approach to the use of compatibilizers in polymer blends, examining both fundamental and advanced knowledge in the field. The book begins by introducing polymer blends, describing thermodynamics, miscibility, and phase separation, and explaining the main concepts of compatibilization. Other sections cover theoretical approaches for nearly compatible blends, incompatible blends, nanofillers, physical compatibilization, reactive compatibilization, morphological and structural characterization, and physico-mechanical characterization. Finally, key application areas are covered, including biomedical applications, packaging and automobile engineering. While this book will be a highly valuable reference source for academics, researchers and postgraduate students interested in polymer blends, it will also be ideal for anyone involved in the fields of polymer science, polymer chemistry, polymer physics, materials science, scientists, R&D professionals, and engineers in involved in the development or engineering of polymer products. - Offers detailed and systematic coverage of essential and advanced topics relating to the compatibilization of polymer blends - Presents a critical analysis of the effect of compatibilization on morphology and thermal, mechanical, electrical and viscoelastic properties of polymer blends - Draws on novel studies and state-of-the-art research, discussing the latest issues and developments

Characterization of Polymer Blends

Characterization of Polymer Blends PDF Author: Sabu Thomas
Publisher: John Wiley & Sons
ISBN: 3527331530
Category : Science
Languages : en
Pages : 972

Get Book Here

Book Description
Filling the gap for a reference dedicated to the characterization of polymer blends and their micro and nano morphologies, this book provides comprehensive, systematic coverage in a one-stop, two-volume resource for all those working in the field. Leading researchers from industry and academia, as well as from government and private research institutions around the world summarize recent technical advances in chapters devoted to their individual contributions. In so doing, they examine a wide range of modern characterization techniques, from microscopy and spectroscopy to diffraction, thermal analysis, rheology, mechanical measurements and chromatography. These methods are compared with each other to assist in determining the best solution for both fundamental and applied problems, paying attention to the characterization of nanoscale miscibility and interfaces, both in blends involving copolymers and in immiscible blends. The thermodynamics, miscibility, phase separation, morphology and interfaces in polymer blends are also discussed in light of new insights involving the nanoscopic scale. Finally, the authors detail the processing-morphology-property relationships of polymer blends, as well as the influence of processing on the generation of micro and nano morphologies, and the dependence of these morphologies on the properties of blends. Hot topics such as compatibilization through nanoparticles, miscibility of new biopolymers and nanoscale investigations of interfaces in blends are also addressed. With its application-oriented approach, handpicked selection of topics and expert contributors, this is an outstanding survey for anyone involved in the field of polymer blends for advanced technologies.

Reactive Extrusion

Reactive Extrusion PDF Author: Günter Beyer
Publisher: John Wiley & Sons
ISBN: 352734098X
Category : Science
Languages : en
Pages : 434

Get Book Here

Book Description
This first comprehensive overview of reactive extrusion technology for over a decade combines the views of contributors from both academia and industry who share their experiences and highlight possible applications and markets. They also provide updated information on the underlying chemical and physical concepts, summarizing recent developments in terms of the material and machinery used. As a result, readers will find here a compilation of potential applications for reactive extrusion to access new and cost-effective polymeric materials, while using existing compounding machines.

Elastomer Technology Handbook

Elastomer Technology Handbook PDF Author: Nicholas P. Cheremisinoff
Publisher: CRC Press
ISBN: 0429610556
Category : Political Science
Languages : en
Pages : 1113

Get Book Here

Book Description
Elastomer Technology Handbook is a major new reference on the science and technology of engineered elastomers. This contributed volume features some of the latest work by international experts in polymer science and rubber technology. Topics covered include theoretical and practical information on characterizing rubbers, designing engineering elastomers for consumer and engineering applications, properties testing, chemical and physical property characterization, polymerization chemistry, rubber processing and fabrication methods, and rheological characterization. The book also highlights both conventional and emerging market applications for synthetic rubber products and emphasizes the latest technology advancements. Elastomer Technology Handbook is a "must have" book for polymer researchers and engineers. It will also benefit anyone involved in the handling, manufacturing, processing, and designing of synthetic rubbers.

Polymer Blends Handbook

Polymer Blends Handbook PDF Author: L. A. Utracki
Publisher:
ISBN: 9789400760653
Category : Polymer engineering
Languages : en
Pages : 1800

Get Book Here

Book Description
Written by an international group of highly respected contributors, this fundamental reference work covers all aspects of polymer blends: science, engineering, technology and applications.

Encyclopedia of Polymer Blends, Volume 2

Encyclopedia of Polymer Blends, Volume 2 PDF Author: Avraam I. Isayev
Publisher: John Wiley & Sons
ISBN: 3527805222
Category : Science
Languages : en
Pages : 422

Get Book Here

Book Description
A complete and timely overview of the topic, this volume imparts knowledge of fundamental principles and their applications for academicians, scientists and researchers, while informing engineers, industrialists and entrepreneurs of the current state of the technology and its utilization. Each article is uniformly structured for easy navigation, containing the latest research & development and its basic principles and applications, examples of case studies, laboratory and pilot plant experiments, as well as due reference to the published and patented literature.

Polymer Blends and Alloys

Polymer Blends and Alloys PDF Author: George P. Simon
Publisher: Routledge
ISBN: 1351423622
Category : Science
Languages : en
Pages : 766

Get Book Here

Book Description
Distinguishing among blends, alloys and other types of combinations, clarifying terminology and presenting data on new processes and materials, this work present up-to-date and effective compounding techniques for polymers. It offers extensive analyses on the challenging questions that surround miscibility, compatibility, dynamic processing, interaction/phase behaviour, and computer simulations for predicting behaviours of polymer mixture and interaction.

Polymer Blends

Polymer Blends PDF Author: D.R. Paul
Publisher: Elsevier
ISBN: 0323149774
Category : Technology & Engineering
Languages : en
Pages : 454

Get Book Here

Book Description
Polymer Blends, Volume 2 aims to show the importance of mixed polymer systems as a major branch of macromolecular science and provides a broad background of principles and practices in this field. Starting from where the first volume left off, the book covers topics in the area of polymer blends in Chapters 11-23. Areas of coverage include interpenetrating polymer networks; interfacial agents for polymer blends; rubber modification of plastics; fracture phenomena; coextruded multilayer polymer films and sheets; polymeric plasticizers; and polyolefin blends and their applications. The book is recommended for scientists, technologists, and engineers in the academe, research, and related industry, especially those who wish to be updated with its advances as a science.

Nanostructured Immiscible Polymer Blends

Nanostructured Immiscible Polymer Blends PDF Author: Suprakas Sinha Ray
Publisher: Elsevier
ISBN: 0128168781
Category : Technology & Engineering
Languages : en
Pages : 242

Get Book Here

Book Description
Nanostructured Immiscible Polymer Blends: Migration and Interface covers a wide range of nanoparticle types, emphasizing the mechanisms and parameters involved in the migration of nanofillers inside immiscible polymer blends. This book explores the influence of nanoparticle migration on the localization, and hence, morphology development, electrical conductivity, and met-rheological properties of blended composite materials. As the influence of solid particles, ranging in size from several hundred nanometers to a few microns in immiscible polymer blends has been extensively studied for use as compatibilizers, morphology stabilizers, and reinforcement agents, this book is a timely resource. - Outlines techniques used to prepare nanoparticles-modified immiscible polymer blend composites - Explains the structural and morphological development, and melt-state rheological behaviors of nanoparticles-modified immiscible polymer blend composites - Discusses major industrial applications

Solid-State Shear Pulverization

Solid-State Shear Pulverization PDF Author: Klementina Khait
Publisher: CRC Press
ISBN: 9781566768030
Category : Technology & Engineering
Languages : en
Pages : 203

Get Book Here

Book Description
From the Preface This book is the first extended look at a new and multifaceted polymer processing technology that has already been discussed in numerous articles. Called Solid-State Shear Pulverization (S3P), this innovative process produces polymeric powders with unique physical properties not found in the output of conventional size-reduction methods.... This technology, which utilizes a pulverizer based on a modified co-rotating twin-screw extruder..., has profound implications for both the creation of new polymer blends and recycling of plastic and rubber waste. Unlike [earlier processes] where polymers are melted prior to pulverization, ...pulverizing mixtures of polymers with the S3P process...does not involve melting. By contrast, S3P maintains polymers in the solid state and avoids the additional heat history that occurs during [other processes], which can be detrimental to the physical properties of pulverized materials. The research and development of the S3P technology...has grown significantly since 1990 from the development of a new plastics recycling process to a much broader polymer processing method that allows intimate mixing of polymers with very different viscosities, sold-state dispersion of additives, including pigments, and continuous production of powder with unique shapes and larger surface areas. Polymeric powders are of growing importance to plastics processors due to the increase use of plastics in various applications, such as rotational molding, powder coatings, and compounding, which require powder as the feedstock. ...[I]t has become clear that this process allows for in-situ compatibilization of dissimilar polymers by applying mechanical energy to cause chemical reactions. This aspect of S3P technology that we describe in this book should [be useful in] developing new polymer blends with the use of pre-made compatibilizing agents. In addition, it has been discovered that S3P efficiently mixes polymer blends with different component viscosities, resulting in the elimination of phase inversion. The S3P process directly produces blends with matrix and dispersed phase morphology like those obtained after phase inversion during a long melt-mixing process. This phenomenon is of practical importance because a long processing time is required by conventional melt-mixing to produce a stable blend morphology. S3P is also advantageous for producing thermoplastic or thermoset powder-coating compounds in a one-step process as opposed to a conventional multi-step operation that involves melt extrusion followed by batch grinding. The major capabilities of this new process can be summarized as follows: o Continuous powder production from plastics or rubber feedstocks o Blending of immiscible polymers o Efficient mixing of polymers with unmatched viscosities o Environmentally friendly recycling of multicolored, commingled plastics waste o Sold-state dispersion of heat-sensitive additives o Engineered plastic/rubber blends Materials and processes well illustrated The text is well illustrated with 60 photographs, micrographs, diagrams and others figures. Here is a small sampling of the captions of these figures. o Particle-size distribution for virgin LDPE powder made with PT-25 pulverizer o Optical photograph of virgin LDPE powder made with PT-25 pulverizer o Layout for a three-stage rubber pulverizer o Flow chart for powder coating production by conventional process and with new S3P technology o SEM image of pulverized virgin PP at 40X (first in series of SEM images of polymer powders) o Optical micrograph of melt-crystallized thin films of unpulverized virgin PP under polarized light o Log of viscosity vs. log shear rate for virgin HDPE after S3P processing o Gel permeation chromatograms (GPC) of polystyrene subjected to S3P processing Color-photo section One of the several functions of Solid-State Shear Pulverization technology is recycling mixed plastic waste. This section of twenty full-color photographs and micrographs illustrates different processed materials, as well as the machinery and mixed waste used. Here is a small sampling of the photo and micrograph captions. o Resultant flake feedstock from granulation o S3P-made uniform powder from feedstock o Flake feedstock of post-consumer HDPE/PP blend (90/10 ratio) o Injection-molded test bar (with translucence) made from S3P powder without pelletization o Injection-molded test bar made from S3P powder without pelletization showing uniform color o Several test bars subjected to tensile testing showing exceptionally high elongation at break Useful reference data in tables More than 60 tables provide useful data in convenient form. Here is a small sampling of table captions. o Physical properties of virgin PP 8020 GU injection-molded from S3P-made powder (first in series of tables on physical properties of various plastics processed from S3P-made powder) o Sieve analysis of powder resulting from S3P of virgin LDPE 509.48 (one of series of tables on sieve analysis of polymer powders) o Melt-flow rate before and after S3P processing for virgin PS and two PP samples o Key physical properties of injection-molded post-consumer polyolefin blends pulverized by S3P process The Authors Klementina Khait, M.S. Ch.E., Ph.D., is Research Associate Professor and Director of the Polymer Technology Center in the Department of Chemical Engineering, Northwestern University. Her industrial experience in polymer science and engineering includes work with Borg-Warner Chemicals and Quantum Chemical Corporation. She received her two advanced degrees, in chemical engineering and polymer chemistry, from the Technological Institute, St. Petersburg, Russia. Dr. Khait holds several patents and has published more than 50 papers in scientific and technical journals. Stephen Carr, Ph.D., is Professor of Materials Science and Engineering and Chemical Engineering at Northwestern University. His industrial work includes work in polymer science and engineering with General Motors Corp. He received a doctorate in polymer science from Case Western Reserve University. He has been on the Northwestern University faculty since 1969. Martin H. Mack is Vice President for R&D with the Berstorff Division of Krauss-Maffei Corporation. He holds an engineering degree from the University of Stuttgart. He has served for more than ten years on the Board of Directors of the Society of Plastics Engineers (SPE).