Author: Claude Fressengeas
Publisher: John Wiley & Sons
ISBN: 111857818X
Category : Technology & Engineering
Languages : en
Pages : 229
Book Description
Accompanying the present trend of engineering systems aimed at size reduction and design at microscopic/nanoscopic length scales, Mechanics of Dislocation Fields describes the self-organization of dislocation ensembles at small length scales and its consequences on the overall mechanical behavior of crystalline bodies. The account of the fundamental interactions between the dislocations and other microscopic crystal defects is based on the use of smooth field quantities and powerful tools from the mathematical theory of partial differential equations. The resulting theory is able to describe the emergence of dislocation microstructures and their evolution along complex loading paths. Scale transitions are performed between the properties of the dislocation ensembles and the mechanical behavior of the body. Several variants of this overall scheme are examined which focus on dislocation cores, electromechanical interactions of dislocations with electric charges in dielectric materials, the intermittency and scale-invariance of dislocation activity, grain-to-grain interactions in polycrystals, size effects on mechanical behavior and path dependence of strain hardening.
Mechanics of Dislocation Fields
Author: Claude Fressengeas
Publisher: John Wiley & Sons
ISBN: 111857818X
Category : Technology & Engineering
Languages : en
Pages : 229
Book Description
Accompanying the present trend of engineering systems aimed at size reduction and design at microscopic/nanoscopic length scales, Mechanics of Dislocation Fields describes the self-organization of dislocation ensembles at small length scales and its consequences on the overall mechanical behavior of crystalline bodies. The account of the fundamental interactions between the dislocations and other microscopic crystal defects is based on the use of smooth field quantities and powerful tools from the mathematical theory of partial differential equations. The resulting theory is able to describe the emergence of dislocation microstructures and their evolution along complex loading paths. Scale transitions are performed between the properties of the dislocation ensembles and the mechanical behavior of the body. Several variants of this overall scheme are examined which focus on dislocation cores, electromechanical interactions of dislocations with electric charges in dielectric materials, the intermittency and scale-invariance of dislocation activity, grain-to-grain interactions in polycrystals, size effects on mechanical behavior and path dependence of strain hardening.
Publisher: John Wiley & Sons
ISBN: 111857818X
Category : Technology & Engineering
Languages : en
Pages : 229
Book Description
Accompanying the present trend of engineering systems aimed at size reduction and design at microscopic/nanoscopic length scales, Mechanics of Dislocation Fields describes the self-organization of dislocation ensembles at small length scales and its consequences on the overall mechanical behavior of crystalline bodies. The account of the fundamental interactions between the dislocations and other microscopic crystal defects is based on the use of smooth field quantities and powerful tools from the mathematical theory of partial differential equations. The resulting theory is able to describe the emergence of dislocation microstructures and their evolution along complex loading paths. Scale transitions are performed between the properties of the dislocation ensembles and the mechanical behavior of the body. Several variants of this overall scheme are examined which focus on dislocation cores, electromechanical interactions of dislocations with electric charges in dielectric materials, the intermittency and scale-invariance of dislocation activity, grain-to-grain interactions in polycrystals, size effects on mechanical behavior and path dependence of strain hardening.
Introduction to Computational Plasticity
Author: Fionn Dunne
Publisher: Oxford University Press
ISBN: 0198568266
Category : Business & Economics
Languages : en
Pages : 259
Book Description
This book gives an introduction to computational plasticity and includes the kinematics of large deformations, together with relevant continuum mechanics. Central to the book is its focus on computational plasticity, and we cover an introduction to the finite element method which includes both quasi-static and dynamic problems. We then go on to describe explicit and implicit implementations of plasticity models in to finite element software. Throughout the book, we describe thegeneral, multiaxial form of the theory but uniquely, wherever possible, reduce the equations to their simplest, uniaxial form to develop understanding of the general theory and, we hope, physical insight. We provide several examples of implicit and explicit implementations of von Mises time-independentand visco-plasticity in to the commercial code ABAQUS (including the fortran coding), which should prove invaluable to research students and practising engineers developing ABAQUS 'UMATs'. The book bridges the gap between undergraduate material on plasticity and existing advanced texts on nonlinear computational mechanics, which makes it ideal for students and practising engineers alike. It introduces a range of engineering applications, including superplasticity, porous plasticity, cyclicplasticity and thermo-mechanical fatigue, to emphasize the subject's relevance and importance.
Publisher: Oxford University Press
ISBN: 0198568266
Category : Business & Economics
Languages : en
Pages : 259
Book Description
This book gives an introduction to computational plasticity and includes the kinematics of large deformations, together with relevant continuum mechanics. Central to the book is its focus on computational plasticity, and we cover an introduction to the finite element method which includes both quasi-static and dynamic problems. We then go on to describe explicit and implicit implementations of plasticity models in to finite element software. Throughout the book, we describe thegeneral, multiaxial form of the theory but uniquely, wherever possible, reduce the equations to their simplest, uniaxial form to develop understanding of the general theory and, we hope, physical insight. We provide several examples of implicit and explicit implementations of von Mises time-independentand visco-plasticity in to the commercial code ABAQUS (including the fortran coding), which should prove invaluable to research students and practising engineers developing ABAQUS 'UMATs'. The book bridges the gap between undergraduate material on plasticity and existing advanced texts on nonlinear computational mechanics, which makes it ideal for students and practising engineers alike. It introduces a range of engineering applications, including superplasticity, porous plasticity, cyclicplasticity and thermo-mechanical fatigue, to emphasize the subject's relevance and importance.
Crystal Plasticity Finite Element Methods
Author: Franz Roters
Publisher: John Wiley & Sons
ISBN: 3527642099
Category : Technology & Engineering
Languages : en
Pages : 188
Book Description
Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.
Publisher: John Wiley & Sons
ISBN: 3527642099
Category : Technology & Engineering
Languages : en
Pages : 188
Book Description
Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.
Fundamental Aspects of Dislocation Theory
Author: John Arthur Simmons
Publisher:
ISBN:
Category : Dislocations in crystals
Languages : en
Pages : 752
Book Description
Publisher:
ISBN:
Category : Dislocations in crystals
Languages : en
Pages : 752
Book Description
Strengthening Mechanisms in Crystal Plasticity
Author: Ali Argon
Publisher: Oxford University Press on Demand
ISBN: 0198516002
Category : Science
Languages : en
Pages : 425
Book Description
Technologically important metals and alloys have been strengthened throughout history by empirical means. The scientific bases of the central mechanisms of such forms of strengthening, developed over the past several decades are presented here through mechanistic models and associated experimental results.
Publisher: Oxford University Press on Demand
ISBN: 0198516002
Category : Science
Languages : en
Pages : 425
Book Description
Technologically important metals and alloys have been strengthened throughout history by empirical means. The scientific bases of the central mechanisms of such forms of strengthening, developed over the past several decades are presented here through mechanistic models and associated experimental results.
Thermally Activated Mechanisms in Crystal Plasticity
Author: D. Caillard
Publisher: Elsevier
ISBN: 0080542786
Category : Technology & Engineering
Languages : en
Pages : 453
Book Description
KEY FEATURES: - A unified, fundamental and quantitative resource. The result of 5 years of investigation from researchers around the world - New data from a range of new techniques, including synchrotron radiation X-ray topography provide safer and surer methods of identifying deformation mechanisms - Informing the future direction of research in intermediate and high temperature processes by providing original treatment of dislocation climb DESCRIPTION: Thermally Activated Mechanisms in Crystal Plasticity is a unified, quantitative and fundamental resource for material scientists investigating the strength of metallic materials of various structures at extreme temperatures. Crystal plasticity is usually controlled by a limited number of elementary dislocation mechanisms, even in complex structures. Those which determine dislocation mobility and how it changes under the influence of stress and temperature are of key importance for understanding and predicting the strength of materials. The authors describe in a consistent way a variety of thermally activated microscopic mechanisms of dislocation mobility in a range of crystals. The principles of the mechanisms and equations of dislocation motion are revisited and new ones are proposed. These describe mostly friction forces on dislocations such as the lattice resistance to glide or those due to sessile cores, as well as dislocation cross-slip and climb. They are critically assessed by comparison with the best available experimental results of microstructural characterization, in situ straining experiments under an electron or a synchrotron beam, as well as accurate transient mechanical tests such as stress relaxation experiments. Some recent attempts at atomistic modeling of dislocation cores under stress and temperature are also considered since they offer a complementary description of core transformations and associated energy barriers. In addition to offering guidance and assistance for further experimentation, the book indicates new ways to extend the body of data in particular areas such as lattice resistance to glide.
Publisher: Elsevier
ISBN: 0080542786
Category : Technology & Engineering
Languages : en
Pages : 453
Book Description
KEY FEATURES: - A unified, fundamental and quantitative resource. The result of 5 years of investigation from researchers around the world - New data from a range of new techniques, including synchrotron radiation X-ray topography provide safer and surer methods of identifying deformation mechanisms - Informing the future direction of research in intermediate and high temperature processes by providing original treatment of dislocation climb DESCRIPTION: Thermally Activated Mechanisms in Crystal Plasticity is a unified, quantitative and fundamental resource for material scientists investigating the strength of metallic materials of various structures at extreme temperatures. Crystal plasticity is usually controlled by a limited number of elementary dislocation mechanisms, even in complex structures. Those which determine dislocation mobility and how it changes under the influence of stress and temperature are of key importance for understanding and predicting the strength of materials. The authors describe in a consistent way a variety of thermally activated microscopic mechanisms of dislocation mobility in a range of crystals. The principles of the mechanisms and equations of dislocation motion are revisited and new ones are proposed. These describe mostly friction forces on dislocations such as the lattice resistance to glide or those due to sessile cores, as well as dislocation cross-slip and climb. They are critically assessed by comparison with the best available experimental results of microstructural characterization, in situ straining experiments under an electron or a synchrotron beam, as well as accurate transient mechanical tests such as stress relaxation experiments. Some recent attempts at atomistic modeling of dislocation cores under stress and temperature are also considered since they offer a complementary description of core transformations and associated energy barriers. In addition to offering guidance and assistance for further experimentation, the book indicates new ways to extend the body of data in particular areas such as lattice resistance to glide.
Mesoscale Models
Author: Sinisa Mesarovic
Publisher: Springer
ISBN: 3319941860
Category : Science
Languages : en
Pages : 348
Book Description
The book helps to answer the following questions: How far have the understanding and mesoscale modeling advanced in recent decades, what are the key open questions that require further research and what are the mathematical and physical requirements for a mesoscale model intended to provide either insight or a predictive engineering tool? It is addressed to young researchers including doctoral students, postdocs and early career faculty,
Publisher: Springer
ISBN: 3319941860
Category : Science
Languages : en
Pages : 348
Book Description
The book helps to answer the following questions: How far have the understanding and mesoscale modeling advanced in recent decades, what are the key open questions that require further research and what are the mathematical and physical requirements for a mesoscale model intended to provide either insight or a predictive engineering tool? It is addressed to young researchers including doctoral students, postdocs and early career faculty,
Electron Backscatter Diffraction in Materials Science
Author: Adam J. Schwartz
Publisher: Springer Science & Business Media
ISBN: 0387881360
Category : Technology & Engineering
Languages : en
Pages : 406
Book Description
Electron backscatter diffraction is a very powerful and relatively new materials characterization technique aimed at the determination of crystallographic texture, grain boundary character distributions, lattice strain, phase identification, and much more. The purpose of this book is to provide the fundamental basis for electron backscatter diffraction in materials science, the current state of both hardware and software, and illustrative examples of the applications of electron backscatter diffraction to a wide-range of materials including undeformed and deformed metals and alloys, ceramics, and superconductors. The text has been substantially revised from the first edition, and the authors have kept the format as close as possible to the first edition text. The new developments covered in this book include a more comphrensive coverage of the fundamentals not covered in the first edition or other books in the field, the advances in hardware and software since the first edition was published, and current examples of application of electron backscatter diffraction to solve challenging problems in materials science and condensed-matter physics.
Publisher: Springer Science & Business Media
ISBN: 0387881360
Category : Technology & Engineering
Languages : en
Pages : 406
Book Description
Electron backscatter diffraction is a very powerful and relatively new materials characterization technique aimed at the determination of crystallographic texture, grain boundary character distributions, lattice strain, phase identification, and much more. The purpose of this book is to provide the fundamental basis for electron backscatter diffraction in materials science, the current state of both hardware and software, and illustrative examples of the applications of electron backscatter diffraction to a wide-range of materials including undeformed and deformed metals and alloys, ceramics, and superconductors. The text has been substantially revised from the first edition, and the authors have kept the format as close as possible to the first edition text. The new developments covered in this book include a more comphrensive coverage of the fundamentals not covered in the first edition or other books in the field, the advances in hardware and software since the first edition was published, and current examples of application of electron backscatter diffraction to solve challenging problems in materials science and condensed-matter physics.
Continuum Scale Simulation of Engineering Materials
Author: Dierk Raabe
Publisher: John Wiley & Sons
ISBN: 3527604219
Category : Technology & Engineering
Languages : en
Pages : 885
Book Description
This book fills a gap by presenting our current knowledge and understanding of continuum-based concepts behind computational methods used for microstructure and process simulation of engineering materials above the atomic scale. The volume provides an excellent overview on the different methods, comparing the different methods in terms of their respective particular weaknesses and advantages. This trains readers to identify appropriate approaches to the new challenges that emerge every day in this exciting domain. Divided into three main parts, the first is a basic overview covering fundamental key methods in the field of continuum scale materials simulation. The second one then goes on to look at applications of these methods to the prediction of microstructures, dealing with explicit simulation examples, while the third part discusses example applications in the field of process simulation. By presenting a spectrum of different computational approaches to materials, the book aims to initiate the development of corresponding virtual laboratories in the industry in which these methods are exploited. As such, it addresses graduates and undergraduates, lecturers, materials scientists and engineers, physicists, biologists, chemists, mathematicians, and mechanical engineers.
Publisher: John Wiley & Sons
ISBN: 3527604219
Category : Technology & Engineering
Languages : en
Pages : 885
Book Description
This book fills a gap by presenting our current knowledge and understanding of continuum-based concepts behind computational methods used for microstructure and process simulation of engineering materials above the atomic scale. The volume provides an excellent overview on the different methods, comparing the different methods in terms of their respective particular weaknesses and advantages. This trains readers to identify appropriate approaches to the new challenges that emerge every day in this exciting domain. Divided into three main parts, the first is a basic overview covering fundamental key methods in the field of continuum scale materials simulation. The second one then goes on to look at applications of these methods to the prediction of microstructures, dealing with explicit simulation examples, while the third part discusses example applications in the field of process simulation. By presenting a spectrum of different computational approaches to materials, the book aims to initiate the development of corresponding virtual laboratories in the industry in which these methods are exploited. As such, it addresses graduates and undergraduates, lecturers, materials scientists and engineers, physicists, biologists, chemists, mathematicians, and mechanical engineers.
Introduction to Unified Mechanics Theory with Applications
Author: Cemal Basaran
Publisher: Springer Nature
ISBN: 3030577724
Category : Science
Languages : en
Pages : 452
Book Description
This text describes the mathematical formulation and proof of the unified mechanics theory (UMT) which is based on the unification of Newton’s laws and the laws of thermodynamics. It also presents formulations and experimental verifications of the theory for thermal, mechanical, electrical, corrosion, chemical and fatigue loads, and it discusses why the original universal laws of motion proposed by Isaac Newton in 1687 are incomplete. The author provides concrete examples, such as how Newton’s second law, F = ma, gives the initial acceleration of a soccer ball kicked by a player, but does not tell us how and when the ball would come to a stop. Over the course of Introduction to Unified Mechanics Theory, Dr. Basaran illustrates that Newtonian mechanics does not account for the thermodynamic changes happening in a system over its usable lifetime. And in this context, this book explains how to design a system to perform its intended functions safely over its usable life time and predicts the expected lifetime of the system without using empirical models, a process currently done using Newtonian mechanics and empirical degradation/failure/fatigue models which are curve-fit to test data. Written as a textbook suitable for upper-level undergraduate mechanics courses, as well as first year graduate level courses, this book is the result of over 25 years of scientific activity with the contribution of dozens of scientists from around the world including USA, Russia, Ukraine, Belarus, Spain, China, India and U.K.
Publisher: Springer Nature
ISBN: 3030577724
Category : Science
Languages : en
Pages : 452
Book Description
This text describes the mathematical formulation and proof of the unified mechanics theory (UMT) which is based on the unification of Newton’s laws and the laws of thermodynamics. It also presents formulations and experimental verifications of the theory for thermal, mechanical, electrical, corrosion, chemical and fatigue loads, and it discusses why the original universal laws of motion proposed by Isaac Newton in 1687 are incomplete. The author provides concrete examples, such as how Newton’s second law, F = ma, gives the initial acceleration of a soccer ball kicked by a player, but does not tell us how and when the ball would come to a stop. Over the course of Introduction to Unified Mechanics Theory, Dr. Basaran illustrates that Newtonian mechanics does not account for the thermodynamic changes happening in a system over its usable lifetime. And in this context, this book explains how to design a system to perform its intended functions safely over its usable life time and predicts the expected lifetime of the system without using empirical models, a process currently done using Newtonian mechanics and empirical degradation/failure/fatigue models which are curve-fit to test data. Written as a textbook suitable for upper-level undergraduate mechanics courses, as well as first year graduate level courses, this book is the result of over 25 years of scientific activity with the contribution of dozens of scientists from around the world including USA, Russia, Ukraine, Belarus, Spain, China, India and U.K.