Comparison of Computational Fluid Dynamic Predictions and Experimental Results for Local Particle Deposition Patterns in Idealized Human Airways

Comparison of Computational Fluid Dynamic Predictions and Experimental Results for Local Particle Deposition Patterns in Idealized Human Airways PDF Author: Michael J. Oldham
Publisher:
ISBN:
Category : Aerosols
Languages : en
Pages : 314

Get Book Here

Book Description


Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 682

Get Book Here

Book Description


Computational Fluid and Particle Dynamics in the Human Respiratory System

Computational Fluid and Particle Dynamics in the Human Respiratory System PDF Author: Jiyuan Tu
Publisher: Springer Science & Business Media
ISBN: 9400744889
Category : Technology & Engineering
Languages : en
Pages : 383

Get Book Here

Book Description
Traditional research methodologies in the human respiratory system have always been challenging due to their invasive nature. Recent advances in medical imaging and computational fluid dynamics (CFD) have accelerated this research. This book compiles and details recent advances in the modelling of the respiratory system for researchers, engineers, scientists, and health practitioners. It breaks down the complexities of this field and provides both students and scientists with an introduction and starting point to the physiology of the respiratory system, fluid dynamics and advanced CFD modeling tools. In addition to a brief introduction to the physics of the respiratory system and an overview of computational methods, the book contains best-practice guidelines for establishing high-quality computational models and simulations. Inspiration for new simulations can be gained through innovative case studies as well as hands-on practice using pre-made computational code. Last but not least, students and researchers are presented the latest biomedical research activities, and the computational visualizations will enhance their understanding of physiological functions of the respiratory system.

Computational Methods in Multiphase Flow VII

Computational Methods in Multiphase Flow VII PDF Author: C. A. Brebbia
Publisher: WIT Press
ISBN: 1845647343
Category : Science
Languages : en
Pages : 557

Get Book Here

Book Description
Multiphase flows are found in all areas of technology, at all length scales and flow regimes and can involve compressible or incompressible linear or nonlinear, fluids. However, although they are ubiquitous, multiphase flows continue to be one of the most challenging areas of computational mechanics, with numerous problems as yet unsolved. Advanced computational and experimental methods are often required to solve the equations that describe such complex problems. The many challenges that must be faced in solving them include modelling nonlinear fluids, modelling and tracking interfaces, dealing with multiple length scales, characterising phase structures, and treating drop break-up and coalescence. It is important to validate models, which calls for the use of expensive and difficult experimental techniques.This book presents contributions on the latest research in the techniques for solving multiphase flow problems, presented at the seventh in a biennial series of conferences on the subject that began in 2001. Featured topics include: Flow in porous media; Turbulent flow; Multiphase flow simulation; Image processing; Heat transfer; Atomization; Interface behaviour; Oil and gas applications; Experimental measurements; Energy applications; Biological flows; Micro and macro fluids; Compressible flows.

Development and Application of Ambient Aerosol Concentrators to Conduct Health Effects Studies in the Los Angeles Basin

Development and Application of Ambient Aerosol Concentrators to Conduct Health Effects Studies in the Los Angeles Basin PDF Author: John R. Froines
Publisher:
ISBN:
Category : Air
Languages : en
Pages : 104

Get Book Here

Book Description


Computational Fluid Dynamics Study of Aerosol Transport and Deposition Mechanisms

Computational Fluid Dynamics Study of Aerosol Transport and Deposition Mechanisms PDF Author: Yingjie Tang
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In this work, various aerosol particle transport and deposition mechanisms were studied through the computational fluid dynamics (CFD) modeling, including inertial impaction, gravitational effect, lift force, interception, and turbophoresis, within different practical applications including aerosol sampling inlet, filtration system and turbulent pipe flows. The objective of the research is to obtain a better understanding of the mechanisms that affect aerosol particle transport and deposition, and to determine the feasibility and accuracy of using commercial CFD tools in predicting performance of aerosol sampling devices. Flow field simulation was carried out first, and then followed by Lagrangian particle tracking to obtain the aerosol transport and deposition information. The CFD-based results were validated with experimental data and empirical correlations. In the simulation of the aerosol inlet, CFD-based penetration was in excellent agreement with experimental results, and the most significant regional particle deposition occurred due to inertial separation. At higher free wind speeds gravity had less effect on particle deposition. An empirical equation for efficiency prediction was developed considering inertial and gravitational effects, which will be useful for directing design of similar aerosol inlets. In the simulation of aerosol deposition on a screen, a "virtual surface" approach, which eliminates the need for the often-ambiguous user defined functions, was developed to account for particle deposition due to interception. The CFD-based results had a good agreement compared with experimental results, and also with published empirical correlations for interception. In the simulation of turbulent deposition in pipe flows, the relation between particle deposition velocity and wall-normal turbulent velocity fluctuation was quantitative determined for the first time, which could be used to quantify turbulent deposition, without having to carry out Lagrangian particle tracking. It suggested that the Reynolds stress model and large eddy simulation would lead to the most accurate simulated aerosol deposition velocity. The prerequisites were that the wall-adjacent y+ value was sufficiently low, and that sufficient number of prism layers was applied in the near-wall region. The "velocity fluctuation convergence" would be useful criterion for judging the adequacy of a CFD simulation for turbulent deposition.

Inhalation Aerosols

Inhalation Aerosols PDF Author: Anthony J. Hickey
Publisher: CRC Press
ISBN: 1351660519
Category : Medical
Languages : en
Pages : 546

Get Book Here

Book Description
Inhalation aerosols continue to be the basis for successful lung therapy for several diseases, with therapeutic strategies and the range of technology significantly evolving in recent years. In response, this third edition takes a new approach to reflect the close integration of technology with its application. After briefly presenting the general considerations that apply to aerosol inhalation, the central section of the book uses the focus on disease and therapeutic agents to illustrate the application of specific technologies. The final integrated strategies section draws the major points from the applications for disease targets and drug products.

Particle-Lung Interactions

Particle-Lung Interactions PDF Author: Peter Gehr
Publisher: CRC Press
ISBN: 1420072579
Category : Medical
Languages : en
Pages : 324

Get Book Here

Book Description
Written by an expanded team of leading international scientists, the second edition thoroughly investigates research and therapies for managing adverse physiological effects of air-borne particles on the respiratory tract. The book examines the lung as the gateway for particle damage to organs outside the respiratory system and provide the informat

Vapor Transport and Aerosol Dynamics in the Respiratory Airways

Vapor Transport and Aerosol Dynamics in the Respiratory Airways PDF Author: Geng Tian
Publisher:
ISBN:
Category : Aerosols
Languages : en
Pages :

Get Book Here

Book Description
Predicting vapor transport and aerosol dynamics in the respiratory airways is important for analyzing both environmental exposure and respiratory drug delivery. A large number of analytical models, computational studies, and experiments on vapor and aerosol transport in the respiratory tract have been conducted previously. However, a number of critical questions remain unanswered. In this study, computational fluid dynamics (CFD) is primarily employed with frequent comparisons to existing and new experimental data sets to address previously unanswered issues related to the transport of vapors and aerosol in the respiratory tract. The three objectives of this study are further described below. Objective 1: A CFD model was developed to predict the transient absorption of inhaled vapors in the respiratory tract. Results indicated that transient absorption can significantly influence the transport and uptake of vapors in the walls of the conducting airways. Objective 2: The concept of enhanced condensational growth (ECG) applied to respiratory drug delivery was tested in a representative airway model extending from the oral cavity to the end of the tracheobronchial (TB) airways. Results indicated that ECG is an effective method to provide near full lung retention of the aerosol. The CFD results also indicated that the ECG delivery approach under transient inhalation conditions increased aerosol deposition in the TB airways by only a small amount, as compared with steady state conditions. Objective 3: The effect of transient waveforms on the transport and deposition of pharmaceutical aerosols from inhalers in the upper airways was considered. Results indicated that the CFD model predictions matched the in vitro experiments to a high degree. The CFD results also indicated that it was critical to consider transient inhalation effects when assessing aerosol deposition. The stochastic individual path (SIP) modeling approach was then introduced and implemented to evaluate the transport and deposition of pharmaceutical aerosols from inhalers in medium and small TB airways. Results indicated that steady state inhalation could be used to predict deposition efficiencies in the TB airways between the 4th branch (B4) and the bronchioles (B15).

Inhaled Particles

Inhaled Particles PDF Author: Chiu-sen Wang
Publisher: Elsevier
ISBN: 0080455018
Category : Technology & Engineering
Languages : en
Pages : 214

Get Book Here

Book Description
Inhaled Particles integrates all that is known about inhaled particles in a unified treatment. It aims to provide a scientific framework essential to a reasonable understanding of inhaled particles. The emphasis is placed on demonstrating the key roles of lung morphology on airflow and particle transport as well as identifying physical and biological factors that influence deposition. Special attention is paid to maintaining consistency of treatment and a balance between theoretical modeling and experimental measurements. The book covers all important aspects of inhaled particles including inhalability, aerosol dispersion, particle deposition, and clearance. It reviews concisely the basic background of lung morphology, respiratory physiology, aerodynamics, and aerosol science pertinent to the subject. Essential aspects of health effects and applications are also included. An easy-to-read, self contained introduction to the field An excellent source of updated research information Useful for students and professionals in aerosol science, environmental health science, occupational hygiene, health physics and biomedical engineering