Harmonic Analysis on Commutative Spaces

Harmonic Analysis on Commutative Spaces PDF Author: Joseph Albert Wolf
Publisher: American Mathematical Soc.
ISBN: 0821842897
Category : Mathematics
Languages : en
Pages : 408

Get Book Here

Book Description
This study starts with the basic theory of topological groups, harmonic analysis, and unitary representations. It then concentrates on geometric structure, harmonic analysis, and unitary representation theory in commutative spaces.

Harmonic Analysis on Commutative Spaces

Harmonic Analysis on Commutative Spaces PDF Author: Joseph Albert Wolf
Publisher: American Mathematical Soc.
ISBN: 0821842897
Category : Mathematics
Languages : en
Pages : 408

Get Book Here

Book Description
This study starts with the basic theory of topological groups, harmonic analysis, and unitary representations. It then concentrates on geometric structure, harmonic analysis, and unitary representation theory in commutative spaces.

Essays in Commutative Harmonic Analysis

Essays in Commutative Harmonic Analysis PDF Author: C. C. Graham
Publisher: Springer Science & Business Media
ISBN: 1461299764
Category : Mathematics
Languages : en
Pages : 483

Get Book Here

Book Description
This book considers various spaces and algebras made up of functions, measures, and other objects-situated always on one or another locally compact abelian group, and studied in the light of the Fourier transform. The emphasis is on the objects themselves, and on the structure-in-detail of the spaces and algebras. A mathematician needs to know only a little about Fourier analysis on the commutative groups, and then may go many ways within the large subject of harmonic analysis-into the beautiful theory of Lie group representations, for example. But this book represents the tendency to linger on the line, and the other abelian groups, and to keep asking questions about the structures thereupon. That tendency, pursued since the early days of analysis, has defined a field of study that can boast of some impressive results, and in which there still remain unanswered questions of compelling interest. We were influenced early in our careers by the mathematicians Jean-Pierre Kahane, Yitzhak Katznelson, Paul Malliavin, Yves Meyer, Joseph Taylor, and Nicholas Varopoulos. They are among the many who have made the field a productive meeting ground of probabilistic methods, number theory, diophantine approximation, and functional analysis. Since the academic year 1967-1968, when we were visitors in Paris and Orsay, the field has continued to see interesting developments. Let us name a few. Sam Drury and Nicholas Varopoulos solved the union problem for Helson sets, by proving a remarkable theorem (2.1.3) which has surely not seen its last use.

A First Course in Harmonic Analysis

A First Course in Harmonic Analysis PDF Author: Anton Deitmar
Publisher: Springer Science & Business Media
ISBN: 147573834X
Category : Mathematics
Languages : en
Pages : 154

Get Book Here

Book Description
This book introduces harmonic analysis at an undergraduate level. In doing so it covers Fourier analysis and paves the way for Poisson Summation Formula. Another central feature is that is makes the reader aware of the fact that both principal incarnations of Fourier theory, the Fourier series and the Fourier transform, are special cases of a more general theory arising in the context of locally compact abelian groups. The final goal of this book is to introduce the reader to the techniques used in harmonic analysis of noncommutative groups. These techniques are explained in the context of matrix groups as a principal example.

Principles of Harmonic Analysis

Principles of Harmonic Analysis PDF Author: Anton Deitmar
Publisher: Springer
ISBN: 3319057928
Category : Mathematics
Languages : en
Pages : 330

Get Book Here

Book Description
This book offers a complete and streamlined treatment of the central principles of abelian harmonic analysis: Pontryagin duality, the Plancherel theorem and the Poisson summation formula, as well as their respective generalizations to non-abelian groups, including the Selberg trace formula. The principles are then applied to spectral analysis of Heisenberg manifolds and Riemann surfaces. This new edition contains a new chapter on p-adic and adelic groups, as well as a complementary section on direct and projective limits. Many of the supporting proofs have been revised and refined. The book is an excellent resource for graduate students who wish to learn and understand harmonic analysis and for researchers seeking to apply it.

Non-commutative Analysis

Non-commutative Analysis PDF Author: Palle Jorgensen
Publisher: World Scientific
ISBN: 9813202149
Category : Mathematics
Languages : en
Pages : 562

Get Book Here

Book Description
'This is a book to be read and worked with. For a beginning graduate student, this can be a valuable experience which at some points in fact leads up to recent research. For such a reader there is also historical information included and many comments aiming at an overview. It is inspiring and original how old material is combined and mixed with new material. There is always something unexpected included in each chapter, which one is thankful to see explained in this context and not only in research papers which are more difficult to access.'Mathematical Reviews ClippingsThe book features new directions in analysis, with an emphasis on Hilbert space, mathematical physics, and stochastic processes. We interpret 'non-commutative analysis' broadly to include representations of non-Abelian groups, and non-Abelian algebras; emphasis on Lie groups and operator algebras (C* algebras and von Neumann algebras.)A second theme is commutative and non-commutative harmonic analysis, spectral theory, operator theory and their applications. The list of topics includes shift invariant spaces, group action in differential geometry, and frame theory (over-complete bases) and their applications to engineering (signal processing and multiplexing), projective multi-resolutions, and free probability algebras.The book serves as an accessible introduction, offering a timeless presentation, attractive and accessible to students, both in mathematics and in neighboring fields.

Diophantine Approximation and Dirichlet Series

Diophantine Approximation and Dirichlet Series PDF Author: Hervé Queffélec
Publisher: Springer Nature
ISBN: 9811593515
Category : Mathematics
Languages : en
Pages : 300

Get Book Here

Book Description
The second edition of the book includes a new chapter on the study of composition operators on the Hardy space and their complete characterization by Gordon and Hedenmalm. The book is devoted to Diophantine approximation, the analytic theory of Dirichlet series and their composition operators, and connections between these two domains which often occur through the Kronecker approximation theorem and the Bohr lift. The book initially discusses Harmonic analysis, including a sharp form of the uncertainty principle, Ergodic theory and Diophantine approximation, basics on continued fractions expansions, and the mixing property of the Gauss map and goes on to present the general theory of Dirichlet series with classes of examples connected to continued fractions, Bohr lift, sharp forms of the Bohnenblust–Hille theorem, Hardy–Dirichlet spaces, composition operators of the Hardy–Dirichlet space, and much more. Proofs throughout the book mix Hilbertian geometry, complex and harmonic analysis, number theory, and ergodic theory, featuring the richness of analytic theory of Dirichlet series. This self-contained book benefits beginners as well as researchers.

Representation Theory and Noncommutative Harmonic Analysis I

Representation Theory and Noncommutative Harmonic Analysis I PDF Author: Alexandre Kirillov
Publisher: Springer Science & Business Media
ISBN: 9783540186984
Category : Mathematics
Languages : en
Pages : 248

Get Book Here

Book Description
This two-part survey provides a short review of the classical part of representation theory, carefully exposing the structure of the theory without overwhelming readers with details, and deals with representations of Virasoro and Kac-Moody algebra. It presents a wealth of recent results on representations of infinite-dimensional groups.

An Introduction to Harmonic Analysis

An Introduction to Harmonic Analysis PDF Author: Yitzhak Katznelson
Publisher:
ISBN:
Category : Harmonic analysis
Languages : en
Pages : 292

Get Book Here

Book Description


Harmonic Analysis on the Heisenberg Group

Harmonic Analysis on the Heisenberg Group PDF Author: Sundaram Thangavelu
Publisher: Springer Science & Business Media
ISBN: 1461217725
Category : Mathematics
Languages : en
Pages : 204

Get Book Here

Book Description
The Heisenberg group plays an important role in several branches of mathematics, such as representation theory, partial differential equations, number theory, several complex variables and quantum mechanics. This monograph deals with various aspects of harmonic analysis on the Heisenberg group, which is the most commutative among the non-commutative Lie groups, and hence gives the greatest opportunity for generalizing the remarkable results of Euclidean harmonic analysis. The aim of this text is to demonstrate how the standard results of abelian harmonic analysis take shape in the non-abelian setup of the Heisenberg group. Thangavelu’s exposition is clear and well developed, and leads to several problems worthy of further consideration. Any reader who is interested in pursuing research on the Heisenberg group will find this unique and self-contained text invaluable.

Noncommutative Microlocal Analysis

Noncommutative Microlocal Analysis PDF Author: Michael Eugene Taylor
Publisher: American Mathematical Soc.
ISBN: 0821823140
Category : Differential equations, Hypoelliptic
Languages : en
Pages : 188

Get Book Here

Book Description