Author: Marco Fontana
Publisher: Walter de Gruyter
ISBN: 3110213184
Category : Mathematics
Languages : en
Pages : 395
Book Description
This volume contains selected refereed papers based on lectures presented at the ‘Fifth International Fez Conference on Commutative Algebra and Applications’ that was held in Fez, Morocco in June 2008. The volume represents new trends and areas of classical research within the field, with contributions from many different countries. In addition, the volume has as a special focus the research and influence of Alain Bouvier on commutative algebra over the past thirty years.
Commutative Algebra and its Applications
Commutative Algebra
Author: David Eisenbud
Publisher: Springer Science & Business Media
ISBN: 1461253500
Category : Mathematics
Languages : en
Pages : 784
Book Description
This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.
Publisher: Springer Science & Business Media
ISBN: 1461253500
Category : Mathematics
Languages : en
Pages : 784
Book Description
This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.
Introduction To Commutative Algebra
Author: Michael F. Atiyah
Publisher: CRC Press
ISBN: 0429973268
Category : Mathematics
Languages : en
Pages : 140
Book Description
First Published in 2018. This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.
Publisher: CRC Press
ISBN: 0429973268
Category : Mathematics
Languages : en
Pages : 140
Book Description
First Published in 2018. This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.
Theory of Generalized Inverses Over Commutative Rings
Author: K.P.S. Bhaskara Rao
Publisher: CRC Press
ISBN: 0203218876
Category : Mathematics
Languages : en
Pages : 193
Book Description
The theory of generalized inverses of real or complex matrices has been expertly developed and documented. But the generalized inverses of matrices over rings have received comprehensive treatment only recently. In this book, the author, who contributed to the research and development of the theory, explains his results. The subject of generalized inverses of matrices over rings has now reached a state suitable for a comprehensive treatment - this book provides just that, for mathematicians, algebraists and control theorists.
Publisher: CRC Press
ISBN: 0203218876
Category : Mathematics
Languages : en
Pages : 193
Book Description
The theory of generalized inverses of real or complex matrices has been expertly developed and documented. But the generalized inverses of matrices over rings have received comprehensive treatment only recently. In this book, the author, who contributed to the research and development of the theory, explains his results. The subject of generalized inverses of matrices over rings has now reached a state suitable for a comprehensive treatment - this book provides just that, for mathematicians, algebraists and control theorists.
Algebraic Geometry and Commutative Algebra
Author: Siegfried Bosch
Publisher: Springer Nature
ISBN: 1447175239
Category : Mathematics
Languages : en
Pages : 504
Book Description
Algebraic Geometry is a fascinating branch of Mathematics that combines methods from both Algebra and Geometry. It transcends the limited scope of pure Algebra by means of geometric construction principles. Putting forward this idea, Grothendieck revolutionized Algebraic Geometry in the late 1950s by inventing schemes. Schemes now also play an important role in Algebraic Number Theory, a field that used to be far away from Geometry. The new point of view paved the way for spectacular progress, such as the proof of Fermat's Last Theorem by Wiles and Taylor. This book explains the scheme-theoretic approach to Algebraic Geometry for non-experts, while more advanced readers can use it to broaden their view on the subject. A separate part presents the necessary prerequisites from Commutative Algebra, thereby providing an accessible and self-contained introduction to advanced Algebraic Geometry. Every chapter of the book is preceded by a motivating introduction with an informal discussion of its contents and background. Typical examples, and an abundance of exercises illustrate each section. Therefore the book is an excellent companion for self-studying or for complementing skills that have already been acquired. It can just as well serve as a convenient source for (reading) course material and, in any case, as supplementary literature. The present edition is a critical revision of the earlier text.
Publisher: Springer Nature
ISBN: 1447175239
Category : Mathematics
Languages : en
Pages : 504
Book Description
Algebraic Geometry is a fascinating branch of Mathematics that combines methods from both Algebra and Geometry. It transcends the limited scope of pure Algebra by means of geometric construction principles. Putting forward this idea, Grothendieck revolutionized Algebraic Geometry in the late 1950s by inventing schemes. Schemes now also play an important role in Algebraic Number Theory, a field that used to be far away from Geometry. The new point of view paved the way for spectacular progress, such as the proof of Fermat's Last Theorem by Wiles and Taylor. This book explains the scheme-theoretic approach to Algebraic Geometry for non-experts, while more advanced readers can use it to broaden their view on the subject. A separate part presents the necessary prerequisites from Commutative Algebra, thereby providing an accessible and self-contained introduction to advanced Algebraic Geometry. Every chapter of the book is preceded by a motivating introduction with an informal discussion of its contents and background. Typical examples, and an abundance of exercises illustrate each section. Therefore the book is an excellent companion for self-studying or for complementing skills that have already been acquired. It can just as well serve as a convenient source for (reading) course material and, in any case, as supplementary literature. The present edition is a critical revision of the earlier text.
Ideals, Varieties, and Algorithms
Author: David Cox
Publisher: Springer Science & Business Media
ISBN: 1475721811
Category : Mathematics
Languages : en
Pages : 523
Book Description
Written at a level appropriate to undergraduates, this book covers such topics as the Hilbert Basis Theorem, the Nullstellensatz, invariant theory, projective geometry, and dimension theory. Contains a new section on Axiom and an update about MAPLE, Mathematica and REDUCE.
Publisher: Springer Science & Business Media
ISBN: 1475721811
Category : Mathematics
Languages : en
Pages : 523
Book Description
Written at a level appropriate to undergraduates, this book covers such topics as the Hilbert Basis Theorem, the Nullstellensatz, invariant theory, projective geometry, and dimension theory. Contains a new section on Axiom and an update about MAPLE, Mathematica and REDUCE.
Algorithmic Methods in Non-Commutative Algebra
Author: J.L. Bueso
Publisher: Springer Science & Business Media
ISBN: 9401702853
Category : Computers
Languages : en
Pages : 307
Book Description
The already broad range of applications of ring theory has been enhanced in the eighties by the increasing interest in algebraic structures of considerable complexity, the so-called class of quantum groups. One of the fundamental properties of quantum groups is that they are modelled by associative coordinate rings possessing a canonical basis, which allows for the use of algorithmic structures based on Groebner bases to study them. This book develops these methods in a self-contained way, concentrating on an in-depth study of the notion of a vast class of non-commutative rings (encompassing most quantum groups), the so-called Poincaré-Birkhoff-Witt rings. We include algorithms which treat essential aspects like ideals and (bi)modules, the calculation of homological dimension and of the Gelfand-Kirillov dimension, the Hilbert-Samuel polynomial, primality tests for prime ideals, etc.
Publisher: Springer Science & Business Media
ISBN: 9401702853
Category : Computers
Languages : en
Pages : 307
Book Description
The already broad range of applications of ring theory has been enhanced in the eighties by the increasing interest in algebraic structures of considerable complexity, the so-called class of quantum groups. One of the fundamental properties of quantum groups is that they are modelled by associative coordinate rings possessing a canonical basis, which allows for the use of algorithmic structures based on Groebner bases to study them. This book develops these methods in a self-contained way, concentrating on an in-depth study of the notion of a vast class of non-commutative rings (encompassing most quantum groups), the so-called Poincaré-Birkhoff-Witt rings. We include algorithms which treat essential aspects like ideals and (bi)modules, the calculation of homological dimension and of the Gelfand-Kirillov dimension, the Hilbert-Samuel polynomial, primality tests for prime ideals, etc.
The Use of Ultraproducts in Commutative Algebra
Author: Hans Schoutens
Publisher: Springer Science & Business Media
ISBN: 3642133673
Category : Mathematics
Languages : en
Pages : 215
Book Description
Exploring ultraproducts of Noetherian local rings from an algebraic perspective, this volume illustrates the many ways they can be used in commutative algebra. The text includes an introduction to tight closure in characteristic zero, a survey of flatness criteria, and more.
Publisher: Springer Science & Business Media
ISBN: 3642133673
Category : Mathematics
Languages : en
Pages : 215
Book Description
Exploring ultraproducts of Noetherian local rings from an algebraic perspective, this volume illustrates the many ways they can be used in commutative algebra. The text includes an introduction to tight closure in characteristic zero, a survey of flatness criteria, and more.
Steps in Commutative Algebra
Author: R. Y. Sharp
Publisher: Cambridge University Press
ISBN: 0521646235
Category : Mathematics
Languages : en
Pages : 371
Book Description
Introductory account of commutative algebra, aimed at students with a background in basic algebra.
Publisher: Cambridge University Press
ISBN: 0521646235
Category : Mathematics
Languages : en
Pages : 371
Book Description
Introductory account of commutative algebra, aimed at students with a background in basic algebra.
Undergraduate Commutative Algebra
Author: Miles Reid
Publisher: Cambridge University Press
ISBN: 9780521458894
Category : Mathematics
Languages : en
Pages : 172
Book Description
Commutative algebra is at the crossroads of algebra, number theory and algebraic geometry. This textbook is affordable and clearly illustrated, and is intended for advanced undergraduate or beginning graduate students with some previous experience of rings and fields. Alongside standard algebraic notions such as generators of modules and the ascending chain condition, the book develops in detail the geometric view of a commutative ring as the ring of functions on a space. The starting point is the Nullstellensatz, which provides a close link between the geometry of a variety V and the algebra of its coordinate ring A=k[V]; however, many of the geometric ideas arising from varieties apply also to fairly general rings. The final chapter relates the material of the book to more advanced topics in commutative algebra and algebraic geometry. It includes an account of some famous 'pathological' examples of Akizuki and Nagata, and a brief but thought-provoking essay on the changing position of abstract algebra in today's world.
Publisher: Cambridge University Press
ISBN: 9780521458894
Category : Mathematics
Languages : en
Pages : 172
Book Description
Commutative algebra is at the crossroads of algebra, number theory and algebraic geometry. This textbook is affordable and clearly illustrated, and is intended for advanced undergraduate or beginning graduate students with some previous experience of rings and fields. Alongside standard algebraic notions such as generators of modules and the ascending chain condition, the book develops in detail the geometric view of a commutative ring as the ring of functions on a space. The starting point is the Nullstellensatz, which provides a close link between the geometry of a variety V and the algebra of its coordinate ring A=k[V]; however, many of the geometric ideas arising from varieties apply also to fairly general rings. The final chapter relates the material of the book to more advanced topics in commutative algebra and algebraic geometry. It includes an account of some famous 'pathological' examples of Akizuki and Nagata, and a brief but thought-provoking essay on the changing position of abstract algebra in today's world.