Author: Mingzhe Chen
Publisher: Springer Nature
ISBN: 3031512669
Category :
Languages : en
Pages : 189
Book Description
Communication Efficient Federated Learning for Wireless Networks
Author: Mingzhe Chen
Publisher: Springer Nature
ISBN: 3031512669
Category :
Languages : en
Pages : 189
Book Description
Publisher: Springer Nature
ISBN: 3031512669
Category :
Languages : en
Pages : 189
Book Description
Federated Learning for Wireless Networks
Author: Choong Seon Hong
Publisher: Springer Nature
ISBN: 9811649634
Category : Computers
Languages : en
Pages : 257
Book Description
Recently machine learning schemes have attained significant attention as key enablers for next-generation wireless systems. Currently, wireless systems are mostly using machine learning schemes that are based on centralizing the training and inference processes by migrating the end-devices data to a third party centralized location. However, these schemes lead to end-devices privacy leakage. To address these issues, one can use a distributed machine learning at network edge. In this context, federated learning (FL) is one of most important distributed learning algorithm, allowing devices to train a shared machine learning model while keeping data locally. However, applying FL in wireless networks and optimizing the performance involves a range of research topics. For example, in FL, training machine learning models require communication between wireless devices and edge servers via wireless links. Therefore, wireless impairments such as uncertainties among wireless channel states, interference, and noise significantly affect the performance of FL. On the other hand, federated-reinforcement learning leverages distributed computation power and data to solve complex optimization problems that arise in various use cases, such as interference alignment, resource management, clustering, and network control. Traditionally, FL makes the assumption that edge devices will unconditionally participate in the tasks when invited, which is not practical in reality due to the cost of model training. As such, building incentive mechanisms is indispensable for FL networks. This book provides a comprehensive overview of FL for wireless networks. It is divided into three main parts: The first part briefly discusses the fundamentals of FL for wireless networks, while the second part comprehensively examines the design and analysis of wireless FL, covering resource optimization, incentive mechanism, security and privacy. It also presents several solutions based on optimization theory, graph theory, and game theory to optimize the performance of federated learning in wireless networks. Lastly, the third part describes several applications of FL in wireless networks.
Publisher: Springer Nature
ISBN: 9811649634
Category : Computers
Languages : en
Pages : 257
Book Description
Recently machine learning schemes have attained significant attention as key enablers for next-generation wireless systems. Currently, wireless systems are mostly using machine learning schemes that are based on centralizing the training and inference processes by migrating the end-devices data to a third party centralized location. However, these schemes lead to end-devices privacy leakage. To address these issues, one can use a distributed machine learning at network edge. In this context, federated learning (FL) is one of most important distributed learning algorithm, allowing devices to train a shared machine learning model while keeping data locally. However, applying FL in wireless networks and optimizing the performance involves a range of research topics. For example, in FL, training machine learning models require communication between wireless devices and edge servers via wireless links. Therefore, wireless impairments such as uncertainties among wireless channel states, interference, and noise significantly affect the performance of FL. On the other hand, federated-reinforcement learning leverages distributed computation power and data to solve complex optimization problems that arise in various use cases, such as interference alignment, resource management, clustering, and network control. Traditionally, FL makes the assumption that edge devices will unconditionally participate in the tasks when invited, which is not practical in reality due to the cost of model training. As such, building incentive mechanisms is indispensable for FL networks. This book provides a comprehensive overview of FL for wireless networks. It is divided into three main parts: The first part briefly discusses the fundamentals of FL for wireless networks, while the second part comprehensively examines the design and analysis of wireless FL, covering resource optimization, incentive mechanism, security and privacy. It also presents several solutions based on optimization theory, graph theory, and game theory to optimize the performance of federated learning in wireless networks. Lastly, the third part describes several applications of FL in wireless networks.
Machine Learning and Wireless Communications
Author: Yonina C. Eldar
Publisher: Cambridge University Press
ISBN: 1108967736
Category : Technology & Engineering
Languages : en
Pages : 560
Book Description
How can machine learning help the design of future communication networks – and how can future networks meet the demands of emerging machine learning applications? Discover the interactions between two of the most transformative and impactful technologies of our age in this comprehensive book. First, learn how modern machine learning techniques, such as deep neural networks, can transform how we design and optimize future communication networks. Accessible introductions to concepts and tools are accompanied by numerous real-world examples, showing you how these techniques can be used to tackle longstanding problems. Next, explore the design of wireless networks as platforms for machine learning applications – an overview of modern machine learning techniques and communication protocols will help you to understand the challenges, while new methods and design approaches will be presented to handle wireless channel impairments such as noise and interference, to meet the demands of emerging machine learning applications at the wireless edge.
Publisher: Cambridge University Press
ISBN: 1108967736
Category : Technology & Engineering
Languages : en
Pages : 560
Book Description
How can machine learning help the design of future communication networks – and how can future networks meet the demands of emerging machine learning applications? Discover the interactions between two of the most transformative and impactful technologies of our age in this comprehensive book. First, learn how modern machine learning techniques, such as deep neural networks, can transform how we design and optimize future communication networks. Accessible introductions to concepts and tools are accompanied by numerous real-world examples, showing you how these techniques can be used to tackle longstanding problems. Next, explore the design of wireless networks as platforms for machine learning applications – an overview of modern machine learning techniques and communication protocols will help you to understand the challenges, while new methods and design approaches will be presented to handle wireless channel impairments such as noise and interference, to meet the demands of emerging machine learning applications at the wireless edge.
Federated Learning
Author: Qiang Yang
Publisher: Springer Nature
ISBN: 3030630765
Category : Computers
Languages : en
Pages : 291
Book Description
This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”
Publisher: Springer Nature
ISBN: 3030630765
Category : Computers
Languages : en
Pages : 291
Book Description
This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”
Federated Learning for Future Intelligent Wireless Networks
Author: Yao Sun
Publisher: John Wiley & Sons
ISBN: 1119913896
Category : Technology & Engineering
Languages : en
Pages : 324
Book Description
Federated Learning for Future Intelligent Wireless Networks Explore the concepts, algorithms, and applications underlying federated learning In Federated Learning for Future Intelligent Wireless Networks, a team of distinguished researchers deliver a robust and insightful collection of resources covering the foundational concepts and algorithms powering federated learning, as well as explanations of how they can be used in wireless communication systems. The editors have included works that examine how communication resource provision affects federated learning performance, accuracy, convergence, scalability, and security and privacy. Readers will explore a wide range of topics that show how federated learning algorithms, concepts, and design and optimization issues apply to wireless communications. Readers will also find: A thorough introduction to the fundamental concepts and algorithms of federated learning, including horizontal, vertical, and hybrid FL Comprehensive explorations of wireless communication network design and optimization for federated learning Practical discussions of novel federated learning algorithms and frameworks for future wireless networks Expansive case studies in edge intelligence, autonomous driving, IoT, MEC, blockchain, and content caching and distribution Perfect for electrical and computer science engineers, researchers, professors, and postgraduate students with an interest in machine learning, Federated Learning for Future Intelligent Wireless Networks will also benefit regulators and institutional actors responsible for overseeing and making policy in the area of artificial intelligence.
Publisher: John Wiley & Sons
ISBN: 1119913896
Category : Technology & Engineering
Languages : en
Pages : 324
Book Description
Federated Learning for Future Intelligent Wireless Networks Explore the concepts, algorithms, and applications underlying federated learning In Federated Learning for Future Intelligent Wireless Networks, a team of distinguished researchers deliver a robust and insightful collection of resources covering the foundational concepts and algorithms powering federated learning, as well as explanations of how they can be used in wireless communication systems. The editors have included works that examine how communication resource provision affects federated learning performance, accuracy, convergence, scalability, and security and privacy. Readers will explore a wide range of topics that show how federated learning algorithms, concepts, and design and optimization issues apply to wireless communications. Readers will also find: A thorough introduction to the fundamental concepts and algorithms of federated learning, including horizontal, vertical, and hybrid FL Comprehensive explorations of wireless communication network design and optimization for federated learning Practical discussions of novel federated learning algorithms and frameworks for future wireless networks Expansive case studies in edge intelligence, autonomous driving, IoT, MEC, blockchain, and content caching and distribution Perfect for electrical and computer science engineers, researchers, professors, and postgraduate students with an interest in machine learning, Federated Learning for Future Intelligent Wireless Networks will also benefit regulators and institutional actors responsible for overseeing and making policy in the area of artificial intelligence.
Federated Learning for IoT Applications
Author: Satya Prakash Yadav
Publisher: Springer Nature
ISBN: 3030855597
Category : Technology & Engineering
Languages : en
Pages : 269
Book Description
This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy. The authors first show how federated learning provides a unique way to build personalized models using data without intruding on users’ privacy. The authors then provide a comprehensive survey of state-of-the-art research on federated learning, giving the reader a general overview of the field. The book also investigates how a personalized federated learning framework is needed in cloud-edge architecture as well as in wireless-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, the book investigates emerging personalized federated learning methods that are able to mitigate the negative effects caused by heterogeneities in different aspects. The book provides case studies of IoT based human activity recognition to demonstrate the effectiveness of personalized federated learning for intelligent IoT applications, as well as multiple controller design and system analysis tools including model predictive control, linear matrix inequalities, optimal control, etc. This unique and complete co-design framework will benefit researchers, graduate students and engineers in the fields of control theory and engineering.
Publisher: Springer Nature
ISBN: 3030855597
Category : Technology & Engineering
Languages : en
Pages : 269
Book Description
This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy. The authors first show how federated learning provides a unique way to build personalized models using data without intruding on users’ privacy. The authors then provide a comprehensive survey of state-of-the-art research on federated learning, giving the reader a general overview of the field. The book also investigates how a personalized federated learning framework is needed in cloud-edge architecture as well as in wireless-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, the book investigates emerging personalized federated learning methods that are able to mitigate the negative effects caused by heterogeneities in different aspects. The book provides case studies of IoT based human activity recognition to demonstrate the effectiveness of personalized federated learning for intelligent IoT applications, as well as multiple controller design and system analysis tools including model predictive control, linear matrix inequalities, optimal control, etc. This unique and complete co-design framework will benefit researchers, graduate students and engineers in the fields of control theory and engineering.
Wireless Algorithms, Systems, and Applications
Author: Zhe Liu
Publisher: Springer Nature
ISBN: 3030859282
Category : Computers
Languages : en
Pages : 635
Book Description
The three-volume set LNCS 12937 - 12939 constitutes the proceedings of the 16th International Conference on Wireless Algorithms, Systems, and Applications, WASA 2021, which was held during June 25-27, 2021. The conference took place in Nanjing, China.The 103 full and 57 short papers presented in these proceedings were carefully reviewed and selected from 315 submissions. The following topics are covered in Part I of the set: network protocols, signal processing, wireless telecommunication systems, blockchain, IoT and edge computing, artificial intelligence, computer security, distributed computer systems, machine learning, and others.
Publisher: Springer Nature
ISBN: 3030859282
Category : Computers
Languages : en
Pages : 635
Book Description
The three-volume set LNCS 12937 - 12939 constitutes the proceedings of the 16th International Conference on Wireless Algorithms, Systems, and Applications, WASA 2021, which was held during June 25-27, 2021. The conference took place in Nanjing, China.The 103 full and 57 short papers presented in these proceedings were carefully reviewed and selected from 315 submissions. The following topics are covered in Part I of the set: network protocols, signal processing, wireless telecommunication systems, blockchain, IoT and edge computing, artificial intelligence, computer security, distributed computer systems, machine learning, and others.
Green Machine Learning Protocols for Future Communication Networks
Author: Saim Ghafoor
Publisher: CRC Press
ISBN: 1000968928
Category : Computers
Languages : en
Pages : 223
Book Description
Machine learning has shown tremendous benefits in solving complex network problems and providing situation and parameter prediction. However, heavy resources are required to process and analyze the data, which can be done either offline or using edge computing but also requires heavy transmission resources to provide a timely response. The need here is to provide lightweight machine learning protocols that can process and analyze the data at run time and provide a timely and efficient response. These algorithms have grown in terms of computation and memory requirements due to the availability of large data sets. These models/algorithms also require high levels of resources such as computing, memory, communication, and storage. The focus so far was on producing highly accurate models for these communication networks without considering the energy consumption of these machine learning algorithms. For future scalable and sustainable network applications, efforts are required toward designing new machine learning protocols and modifying the existing ones, which consume less energy, i.e., green machine learning protocols. In other words, novel and lightweight green machine learning algorithms/protocols are required to reduce energy consumption which can also reduce the carbon footprint. To realize the green machine learning protocols, this book presents different aspects of green machine learning for future communication networks. This book highlights mainly the green machine learning protocols for cellular communication, federated learning-based models, and protocols for Beyond Fifth Generation networks, approaches for cloud-based communications, and Internet-of-Things. This book also highlights the design considerations and challenges for green machine learning protocols for different future applications.
Publisher: CRC Press
ISBN: 1000968928
Category : Computers
Languages : en
Pages : 223
Book Description
Machine learning has shown tremendous benefits in solving complex network problems and providing situation and parameter prediction. However, heavy resources are required to process and analyze the data, which can be done either offline or using edge computing but also requires heavy transmission resources to provide a timely response. The need here is to provide lightweight machine learning protocols that can process and analyze the data at run time and provide a timely and efficient response. These algorithms have grown in terms of computation and memory requirements due to the availability of large data sets. These models/algorithms also require high levels of resources such as computing, memory, communication, and storage. The focus so far was on producing highly accurate models for these communication networks without considering the energy consumption of these machine learning algorithms. For future scalable and sustainable network applications, efforts are required toward designing new machine learning protocols and modifying the existing ones, which consume less energy, i.e., green machine learning protocols. In other words, novel and lightweight green machine learning algorithms/protocols are required to reduce energy consumption which can also reduce the carbon footprint. To realize the green machine learning protocols, this book presents different aspects of green machine learning for future communication networks. This book highlights mainly the green machine learning protocols for cellular communication, federated learning-based models, and protocols for Beyond Fifth Generation networks, approaches for cloud-based communications, and Internet-of-Things. This book also highlights the design considerations and challenges for green machine learning protocols for different future applications.
Machine Learning for Low-Latency Communications
Author: Yong Zhou
Publisher: Elsevier
ISBN: 0443220743
Category : Technology & Engineering
Languages : en
Pages : 218
Book Description
Machine Learning for Low-Latency Communications presents the principles and practice of various deep learning methodologies for mitigating three critical latency components: access latency, transmission latency, and processing latency. In particular, the book develops learning to estimate methods via algorithm unrolling and multiarmed bandit for reducing access latency by enlarging the number of concurrent transmissions with the same pilot length. Task-oriented learning to compress methods based on information bottleneck are given to reduce the transmission latency via avoiding unnecessary data transmission. Lastly, three learning to optimize methods for processing latency reduction are given which leverage graph neural networks, multi-agent reinforcement learning, and domain knowledge. Low-latency communications attracts considerable attention from both academia and industry, given its potential to support various emerging applications such as industry automation, autonomous vehicles, augmented reality and telesurgery. Despite the great promise, achieving low-latency communications is critically challenging. Supporting massive connectivity incurs long access latency, while transmitting high-volume data leads to substantial transmission latency. - Presents the challenges and opportunities of leveraging data and model-driven machine learning methodologies for achieving low-latency communications - Explains the principles and practices of modern machine learning algorithms (e.g., algorithm unrolling, multiarmed bandit, graph neural network, and multi-agent reinforcement learning) for achieving low-latency communications - Gives design, modeling, and optimization methods for low-latency communications that apply appropriate learning methods to solve longstanding problems - Provides full details of the simulation setup and benchmarking algorithms, with downloadable code - Outlines future research challenges and directions
Publisher: Elsevier
ISBN: 0443220743
Category : Technology & Engineering
Languages : en
Pages : 218
Book Description
Machine Learning for Low-Latency Communications presents the principles and practice of various deep learning methodologies for mitigating three critical latency components: access latency, transmission latency, and processing latency. In particular, the book develops learning to estimate methods via algorithm unrolling and multiarmed bandit for reducing access latency by enlarging the number of concurrent transmissions with the same pilot length. Task-oriented learning to compress methods based on information bottleneck are given to reduce the transmission latency via avoiding unnecessary data transmission. Lastly, three learning to optimize methods for processing latency reduction are given which leverage graph neural networks, multi-agent reinforcement learning, and domain knowledge. Low-latency communications attracts considerable attention from both academia and industry, given its potential to support various emerging applications such as industry automation, autonomous vehicles, augmented reality and telesurgery. Despite the great promise, achieving low-latency communications is critically challenging. Supporting massive connectivity incurs long access latency, while transmitting high-volume data leads to substantial transmission latency. - Presents the challenges and opportunities of leveraging data and model-driven machine learning methodologies for achieving low-latency communications - Explains the principles and practices of modern machine learning algorithms (e.g., algorithm unrolling, multiarmed bandit, graph neural network, and multi-agent reinforcement learning) for achieving low-latency communications - Gives design, modeling, and optimization methods for low-latency communications that apply appropriate learning methods to solve longstanding problems - Provides full details of the simulation setup and benchmarking algorithms, with downloadable code - Outlines future research challenges and directions
Mobile Edge Computing
Author: Yan Zhang
Publisher: Springer Nature
ISBN: 3030839443
Category : Computers
Languages : en
Pages : 123
Book Description
This is an open access book. It offers comprehensive, self-contained knowledge on Mobile Edge Computing (MEC), which is a very promising technology for achieving intelligence in the next-generation wireless communications and computing networks.The book starts with the basic concepts, key techniques and network architectures of MEC. Then, we present the wide applications of MEC, including edge caching, 6G networks, Internet of Vehicles, and UAVs. In the last part, we present new opportunities when MEC meets blockchain, Artificial Intelligence, and distributed machine learning (e.g., federated learning). We also identify the emerging applications of MEC in pandemic, industrial Internet of Things and disaster management.The book allows an easy cross-reference owing to the broad coverage on both the principle and applications of MEC. The book is written for people interested in communications and computer networks at all levels. The primary audience includes senior undergraduates, postgraduates, educators, scientists, researchers, developers, engineers, innovators and research strategists.
Publisher: Springer Nature
ISBN: 3030839443
Category : Computers
Languages : en
Pages : 123
Book Description
This is an open access book. It offers comprehensive, self-contained knowledge on Mobile Edge Computing (MEC), which is a very promising technology for achieving intelligence in the next-generation wireless communications and computing networks.The book starts with the basic concepts, key techniques and network architectures of MEC. Then, we present the wide applications of MEC, including edge caching, 6G networks, Internet of Vehicles, and UAVs. In the last part, we present new opportunities when MEC meets blockchain, Artificial Intelligence, and distributed machine learning (e.g., federated learning). We also identify the emerging applications of MEC in pandemic, industrial Internet of Things and disaster management.The book allows an easy cross-reference owing to the broad coverage on both the principle and applications of MEC. The book is written for people interested in communications and computer networks at all levels. The primary audience includes senior undergraduates, postgraduates, educators, scientists, researchers, developers, engineers, innovators and research strategists.