Algorithms in Combinatorial Geometry

Algorithms in Combinatorial Geometry PDF Author: Herbert Edelsbrunner
Publisher: Springer Science & Business Media
ISBN: 9783540137221
Category : Computers
Languages : en
Pages : 446

Get Book Here

Book Description
Computational geometry as an area of research in its own right emerged in the early seventies of this century. Right from the beginning, it was obvious that strong connections of various kinds exist to questions studied in the considerably older field of combinatorial geometry. For example, the combinatorial structure of a geometric problem usually decides which algorithmic method solves the problem most efficiently. Furthermore, the analysis of an algorithm often requires a great deal of combinatorial knowledge. As it turns out, however, the connection between the two research areas commonly referred to as computa tional geometry and combinatorial geometry is not as lop-sided as it appears. Indeed, the interest in computational issues in geometry gives a new and con structive direction to the combinatorial study of geometry. It is the intention of this book to demonstrate that computational and com binatorial investigations in geometry are doomed to profit from each other. To reach this goal, I designed this book to consist of three parts, acorn binatorial part, a computational part, and one that presents applications of the results of the first two parts. The choice of the topics covered in this book was guided by my attempt to describe the most fundamental algorithms in computational geometry that have an interesting combinatorial structure. In this early stage geometric transforms played an important role as they reveal connections between seemingly unrelated problems and thus help to structure the field.

Algorithms in Combinatorial Geometry

Algorithms in Combinatorial Geometry PDF Author: Herbert Edelsbrunner
Publisher: Springer Science & Business Media
ISBN: 9783540137221
Category : Computers
Languages : en
Pages : 446

Get Book Here

Book Description
Computational geometry as an area of research in its own right emerged in the early seventies of this century. Right from the beginning, it was obvious that strong connections of various kinds exist to questions studied in the considerably older field of combinatorial geometry. For example, the combinatorial structure of a geometric problem usually decides which algorithmic method solves the problem most efficiently. Furthermore, the analysis of an algorithm often requires a great deal of combinatorial knowledge. As it turns out, however, the connection between the two research areas commonly referred to as computa tional geometry and combinatorial geometry is not as lop-sided as it appears. Indeed, the interest in computational issues in geometry gives a new and con structive direction to the combinatorial study of geometry. It is the intention of this book to demonstrate that computational and com binatorial investigations in geometry are doomed to profit from each other. To reach this goal, I designed this book to consist of three parts, acorn binatorial part, a computational part, and one that presents applications of the results of the first two parts. The choice of the topics covered in this book was guided by my attempt to describe the most fundamental algorithms in computational geometry that have an interesting combinatorial structure. In this early stage geometric transforms played an important role as they reveal connections between seemingly unrelated problems and thus help to structure the field.

Combinatorial Geometry and Its Algorithmic Applications

Combinatorial Geometry and Its Algorithmic Applications PDF Author: János Pach
Publisher: American Mathematical Soc.
ISBN: 0821846914
Category : Mathematics
Languages : en
Pages : 251

Get Book Here

Book Description
"Based on a lecture series given by the authors at a satellite meeting of the 2006 International Congress of Mathematicians and on many articles written by them and their collaborators, this volume provides a comprehensive up-to-date survey of several core areas of combinatorial geometry. It describes the beginnings of the subject, going back to the nineteenth century (if not to Euclid), and explains why counting incidences and estimating the combinatorial complexity of various arrangements of geometric objects became the theoretical backbone of computational geometry in the 1980s and 1990s. The combinatorial techniques outlined in this book have found applications in many areas of computer science from graph drawing through hidden surface removal and motion planning to frequency allocation in cellular networks. "Combinatorial Geometry and Its Algorithmic Applications" is intended as a source book for professional mathematicians and computer scientists as well as for graduate students interested in combinatorics and geometry. Most chapters start with an attractive, simply formulated, but often difficult and only partially answered mathematical question, and describes the most efficient techniques developed for its solution. The text includes many challenging open problems, figures, and an extensive bibliography."--BOOK JACKET.

Geometric Algorithms and Combinatorial Optimization

Geometric Algorithms and Combinatorial Optimization PDF Author: Martin Grötschel
Publisher: Springer Science & Business Media
ISBN: 3642978819
Category : Mathematics
Languages : en
Pages : 374

Get Book Here

Book Description
Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses two recent geometric algorithms that have turned out to have particularly interesting consequences in combinatorial optimization, at least from a theoretical point of view. These algorithms are able to utilize the rich body of results in polyhedral combinatorics. The first of these algorithms is the ellipsoid method, developed for nonlinear programming by N. Z. Shor, D. B. Yudin, and A. S. NemirovskiI. It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open theoretical problem. While the ellipsoid method has not proved to be competitive with the simplex method in practice, it does have some features which make it particularly suited for the purposes of combinatorial optimization. The second algorithm we discuss finds its roots in the classical "geometry of numbers", developed by Minkowski. This method has had traditionally deep applications in number theory, in particular in diophantine approximation.

Computational Geometry

Computational Geometry PDF Author: Mark de Berg
Publisher: Springer Science & Business Media
ISBN: 3662042452
Category : Computers
Languages : en
Pages : 370

Get Book Here

Book Description
This introduction to computational geometry focuses on algorithms. Motivation is provided from the application areas as all techniques are related to particular applications in robotics, graphics, CAD/CAM, and geographic information systems. Modern insights in computational geometry are used to provide solutions that are both efficient and easy to understand and implement.

Combinatorial and Computational Geometry

Combinatorial and Computational Geometry PDF Author: Jacob E. Goodman
Publisher: Cambridge University Press
ISBN: 9780521848626
Category : Computers
Languages : en
Pages : 640

Get Book Here

Book Description
This 2005 book deals with interest topics in Discrete and Algorithmic aspects of Geometry.

Computational Geometry

Computational Geometry PDF Author: Franco P. Preparata
Publisher: Springer Science & Business Media
ISBN: 1461210984
Category : Mathematics
Languages : en
Pages : 413

Get Book Here

Book Description
From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2

Combinatorial Geometry with Applications to Field Theory, Second Edition, graduate textbook in mathematics

Combinatorial Geometry with Applications to Field Theory, Second Edition, graduate textbook in mathematics PDF Author: Linfan Mao
Publisher: Infinite Study
ISBN: 159973155X
Category : Combinatorial geometry
Languages : en
Pages : 502

Get Book Here

Book Description


Algorithmic Geometry

Algorithmic Geometry PDF Author: Jean-Daniel Boissonnat
Publisher: Cambridge University Press
ISBN: 9780521565295
Category : Computers
Languages : en
Pages : 548

Get Book Here

Book Description
The design and analysis of geometric algorithms have seen remarkable growth in recent years, due to their application in, for example, computer vision, graphics, medical imaging and CAD. The goals of this book are twofold: first to provide a coherent and systematic treatment of the foundations; secondly to present algorithmic solutions that are amenable to rigorous analysis and are efficient in practical situations. When possible, the algorithms are presented in their most general d-dimensional setting. Specific developments are given for the 2- or 3-dimensional cases when this results in significant improvements. The presentation is confined to Euclidean affine geometry, though the authors indicate whenever the treatment can be extended to curves and surfaces. The prerequisites for using the book are few, which will make it ideal for teaching advanced undergraduate or beginning graduate courses in computational geometry.

Combinatorial Geometry with Applications to Field Theory

Combinatorial Geometry with Applications to Field Theory PDF Author: Linfan Mao
Publisher: Infinite Study
ISBN: 1599731002
Category : Mathematics
Languages : en
Pages : 499

Get Book Here

Book Description
This monograph is motivated with surveying mathematics and physics by CC conjecture, i.e., a mathematical science can be reconstructed from or made by combinatorialization. Topics covered in this book include fundamental of mathematical combinatorics, differential Smarandache n-manifolds, combinatorial or differentiable manifolds and submanifolds, Lie multi-groups, combinatorial principal fiber bundles, gravitational field, quantum fields with their combinatorial generalization, also with discussions on fundamental questions in epistemology. All of these are valuable for researchers in combinatorics, topology, differential geometry, gravitational or quantum fields.

Handbook of Discrete and Computational Geometry

Handbook of Discrete and Computational Geometry PDF Author: Csaba D. Toth
Publisher: CRC Press
ISBN: 1351645919
Category : Computers
Languages : en
Pages : 2354

Get Book Here

Book Description
The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.