Algebraic and Combinatorial Computational Biology

Algebraic and Combinatorial Computational Biology PDF Author: Raina Robeva
Publisher: Academic Press
ISBN: 0128140690
Category : Mathematics
Languages : en
Pages : 436

Get Book Here

Book Description
Algebraic and Combinatorial Computational Biology introduces students and researchers to a panorama of powerful and current methods for mathematical problem-solving in modern computational biology. Presented in a modular format, each topic introduces the biological foundations of the field, covers specialized mathematical theory, and concludes by highlighting connections with ongoing research, particularly open questions. The work addresses problems from gene regulation, neuroscience, phylogenetics, molecular networks, assembly and folding of biomolecular structures, and the use of clustering methods in biology. A number of these chapters are surveys of new topics that have not been previously compiled into one unified source. These topics were selected because they highlight the use of technique from algebra and combinatorics that are becoming mainstream in the life sciences. - Integrates a comprehensive selection of tools from computational biology into educational or research programs - Emphasizes practical problem-solving through multiple exercises, projects and spinoff computational simulations - Contains scalable material for use in undergraduate and graduate-level classes and research projects - Introduces the reader to freely-available professional software - Supported by illustrative datasets and adaptable computer code

Algebraic and Combinatorial Computational Biology

Algebraic and Combinatorial Computational Biology PDF Author: Raina Robeva
Publisher: Academic Press
ISBN: 0128140690
Category : Mathematics
Languages : en
Pages : 436

Get Book Here

Book Description
Algebraic and Combinatorial Computational Biology introduces students and researchers to a panorama of powerful and current methods for mathematical problem-solving in modern computational biology. Presented in a modular format, each topic introduces the biological foundations of the field, covers specialized mathematical theory, and concludes by highlighting connections with ongoing research, particularly open questions. The work addresses problems from gene regulation, neuroscience, phylogenetics, molecular networks, assembly and folding of biomolecular structures, and the use of clustering methods in biology. A number of these chapters are surveys of new topics that have not been previously compiled into one unified source. These topics were selected because they highlight the use of technique from algebra and combinatorics that are becoming mainstream in the life sciences. - Integrates a comprehensive selection of tools from computational biology into educational or research programs - Emphasizes practical problem-solving through multiple exercises, projects and spinoff computational simulations - Contains scalable material for use in undergraduate and graduate-level classes and research projects - Introduces the reader to freely-available professional software - Supported by illustrative datasets and adaptable computer code

Algorithmic and Combinatorial Algebra

Algorithmic and Combinatorial Algebra PDF Author: L.A. Bokut'
Publisher: Springer Science & Business Media
ISBN: 9780792323136
Category : Computers
Languages : en
Pages : 406

Get Book Here

Book Description
Even three decades ago, the words 'combinatorial algebra' contrasting, for in stance, the words 'combinatorial topology,' were not a common designation for some branch of mathematics. The collocation 'combinatorial group theory' seems to ap pear first as the title of the book by A. Karras, W. Magnus, and D. Solitar [182] and, later on, it served as the title of the book by R. C. Lyndon and P. Schupp [247]. Nowadays, specialists do not question the existence of 'combinatorial algebra' as a special algebraic activity. The activity is distinguished not only by its objects of research (that are effectively given to some extent) but also by its methods (ef fective to some extent). To be more exact, we could approximately define the term 'combinatorial algebra' for the purposes of this book, as follows: So we call a part of algebra dealing with groups, semi groups , associative algebras, Lie algebras, and other algebraic systems which are given by generators and defining relations {in the first and particular place, free groups, semigroups, algebras, etc. )j a part in which we study universal constructions, viz. free products, lINN-extensions, etc. j and, finally, a part where specific methods such as the Composition Method (in other words, the Diamond Lemma, see [49]) are applied. Surely, the above explanation is far from covering the full scope of the term (compare the prefaces to the books mentioned above).

Combinatorial Structures in Algebra and Geometry

Combinatorial Structures in Algebra and Geometry PDF Author: Dumitru I. Stamate
Publisher: Springer Nature
ISBN: 3030521117
Category : Mathematics
Languages : en
Pages : 185

Get Book Here

Book Description
This proceedings volume presents selected, peer-reviewed contributions from the 26th National School on Algebra, which was held in Constanța, Romania, on August 26-September 1, 2018. The works cover three fields of mathematics: algebra, geometry and discrete mathematics, discussing the latest developments in the theory of monomial ideals, algebras of graphs and local positivity of line bundles. Whereas interactions between algebra and geometry go back at least to Hilbert, the ties to combinatorics are much more recent and are subject of immense interest at the forefront of contemporary mathematics research. Transplanting methods between different branches of mathematics has proved very fruitful in the past – for example, the application of fixed point theorems in topology to solving nonlinear differential equations in analysis. Similarly, combinatorial structures, e.g., Newton-Okounkov bodies, have led to significant advances in our understanding of the asymptotic properties of line bundles in geometry and multiplier ideals in algebra. This book is intended for advanced graduate students, young scientists and established researchers with an interest in the overlaps between different fields of mathematics. A volume for the 24th edition of this conference was previously published with Springer under the title "Multigraded Algebra and Applications" (ISBN 978-3-319-90493-1).

Combinatorial Algebraic Topology

Combinatorial Algebraic Topology PDF Author: Dimitry Kozlov
Publisher: Springer Science & Business Media
ISBN: 9783540730514
Category : Mathematics
Languages : en
Pages : 416

Get Book Here

Book Description
This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.

Combinatorial Convexity and Algebraic Geometry

Combinatorial Convexity and Algebraic Geometry PDF Author: Günter Ewald
Publisher: Springer Science & Business Media
ISBN: 1461240441
Category : Mathematics
Languages : en
Pages : 378

Get Book Here

Book Description
The book is an introduction to the theory of convex polytopes and polyhedral sets, to algebraic geometry, and to the connections between these fields, known as the theory of toric varieties. The first part of the book covers the theory of polytopes and provides large parts of the mathematical background of linear optimization and of the geometrical aspects in computer science. The second part introduces toric varieties in an elementary way.

Combinatorial and Computational Algebra

Combinatorial and Computational Algebra PDF Author: Kai-Yuen Chan
Publisher: American Mathematical Soc.
ISBN: 0821819844
Category : Mathematics
Languages : en
Pages : 318

Get Book Here

Book Description
This volume presents articles based on the talks at the International Conference on Combinatorial and Computational Algebra held at the University of Hong Kong (China). The conference was part of the Algebra Program at the Institute of Mathematical Research and the Mathematics Department at the University of Hong Kong. Topics include recent developments in the following areas: combinatorial and computational aspects of group theory, combinatorial and computational aspects of associative and nonassociative algebras, automorphisms of polynomial algebras and the Jacobian conjecture, and combinatorics and coding theory. This volume can serve as a solid introductory guide for advanced graduate students, as well as a rich and up-to-date reference source for contemporary researchers in the field.

Computational and Combinatorial Group Theory and Cryptography

Computational and Combinatorial Group Theory and Cryptography PDF Author: Benjamin Fine (mathématicien).)
Publisher:
ISBN: 9780821875636
Category : Cryptography
Languages : en
Pages : 199

Get Book Here

Book Description


Combinatorial and Computational Geometry

Combinatorial and Computational Geometry PDF Author: Jacob E. Goodman
Publisher: Cambridge University Press
ISBN: 9780521848626
Category : Computers
Languages : en
Pages : 640

Get Book Here

Book Description
This 2005 book deals with interest topics in Discrete and Algorithmic aspects of Geometry.

Algebraic Combinatorics

Algebraic Combinatorics PDF Author: Richard P. Stanley
Publisher: Springer Science & Business Media
ISBN: 1461469988
Category : Mathematics
Languages : en
Pages : 226

Get Book Here

Book Description
Written by one of the foremost experts in the field, Algebraic Combinatorics is a unique undergraduate textbook that will prepare the next generation of pure and applied mathematicians. The combination of the author’s extensive knowledge of combinatorics and classical and practical tools from algebra will inspire motivated students to delve deeply into the fascinating interplay between algebra and combinatorics. Readers will be able to apply their newfound knowledge to mathematical, engineering, and business models. The text is primarily intended for use in a one-semester advanced undergraduate course in algebraic combinatorics, enumerative combinatorics, or graph theory. Prerequisites include a basic knowledge of linear algebra over a field, existence of finite fields, and group theory. The topics in each chapter build on one another and include extensive problem sets as well as hints to selected exercises. Key topics include walks on graphs, cubes and the Radon transform, the Matrix–Tree Theorem, and the Sperner property. There are also three appendices on purely enumerative aspects of combinatorics related to the chapter material: the RSK algorithm, plane partitions, and the enumeration of labeled trees. Richard Stanley is currently professor of Applied Mathematics at the Massachusetts Institute of Technology. Stanley has received several awards including the George Polya Prize in applied combinatorics, the Guggenheim Fellowship, and the Leroy P. Steele Prize for mathematical exposition. Also by the author: Combinatorics and Commutative Algebra, Second Edition, © Birkhauser.

Combinatorial Commutative Algebra

Combinatorial Commutative Algebra PDF Author: Ezra Miller
Publisher: Springer Science & Business Media
ISBN: 9780387237077
Category : Mathematics
Languages : en
Pages : 442

Get Book Here

Book Description
Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs