Colloidal Nanoparticles for Phase Change Memory Applications

Colloidal Nanoparticles for Phase Change Memory Applications PDF Author: Marissa Anne Caldwell
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 113

Get Book Here

Book Description
Phase change (PC) memory has emerged as a leading candidate for next generation information storage technology. Based on the reversible amorphous-crystalline phase transition of chalcogenide materials, PC technology has already been commercialized through the optical disk industry and is currently being evaluated for non-volatile electronic data storage as phase change random access memory (PCRAM). In either the optical or electronic application, device performance relies on the material properties of the active phase change material (PCM). Traditionally deposited through physio-chemical routes such as sputtering or chemical vapor deposition, the PCM fundamentally limits PC scaling potential as it is expected that key properties will change as the volume of PCM decreases. Colloidal nanoparticle systems provide a unique opportunity to systematically study the properties of materials in the nanosize regime due to the potential for exquisite composition and size control. In this talk, I will present the first colloidal nanoparticle system of a known phase change material. Colloidal GeTe nanoparticles 1.4-4nm in diameter were synthesized through a co-precipitation route and characterized by transmission electron microscopy, energy dispersive x-ray spectroscopy and x-ray diffraction. Nuclear magnetic resonance spectroscopy (1H and 31P) was used to elucidate the molecular species involved in the reaction pathway and found that a metal center mediated proton transfer is necessary to mediate the relative reactivity of the reactants. In addition, a post-synthetic size selective procedure was developed to separate the nanoparticles into distinct size ranges. Using in-situ heating, the size dependent crystallization temperature was measured by XRD and was found to increase with decreasing nanoparticle diameter suggesting favorable improvements in lifetime data retention for scaled PCRAM cells. To evaluate the potential use in PCRAM devices, electrical measurements were also collected on nanoparticle films. Resistance versus temperature measurements revealed that nanoparticle films retained the high resistive contrast between the amorphous and crystalline phases necessary for PCRAM operation. After design optimization, PCRAM cells were fabricated utilizing the nanoparticles as a solution processable precursor to the PCM. Completed cells showed reversible switching, including threshold switching, characteristic of PCRAM operation. Cycling up to 200 times, the cells are the best performing solution processed PCRAM devices reported to date, suggesting that colloidal nanoparticles are a viable route to PCMs.

Colloidal Nanoparticles for Phase Change Memory Applications

Colloidal Nanoparticles for Phase Change Memory Applications PDF Author: Marissa Anne Caldwell
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 113

Get Book Here

Book Description
Phase change (PC) memory has emerged as a leading candidate for next generation information storage technology. Based on the reversible amorphous-crystalline phase transition of chalcogenide materials, PC technology has already been commercialized through the optical disk industry and is currently being evaluated for non-volatile electronic data storage as phase change random access memory (PCRAM). In either the optical or electronic application, device performance relies on the material properties of the active phase change material (PCM). Traditionally deposited through physio-chemical routes such as sputtering or chemical vapor deposition, the PCM fundamentally limits PC scaling potential as it is expected that key properties will change as the volume of PCM decreases. Colloidal nanoparticle systems provide a unique opportunity to systematically study the properties of materials in the nanosize regime due to the potential for exquisite composition and size control. In this talk, I will present the first colloidal nanoparticle system of a known phase change material. Colloidal GeTe nanoparticles 1.4-4nm in diameter were synthesized through a co-precipitation route and characterized by transmission electron microscopy, energy dispersive x-ray spectroscopy and x-ray diffraction. Nuclear magnetic resonance spectroscopy (1H and 31P) was used to elucidate the molecular species involved in the reaction pathway and found that a metal center mediated proton transfer is necessary to mediate the relative reactivity of the reactants. In addition, a post-synthetic size selective procedure was developed to separate the nanoparticles into distinct size ranges. Using in-situ heating, the size dependent crystallization temperature was measured by XRD and was found to increase with decreasing nanoparticle diameter suggesting favorable improvements in lifetime data retention for scaled PCRAM cells. To evaluate the potential use in PCRAM devices, electrical measurements were also collected on nanoparticle films. Resistance versus temperature measurements revealed that nanoparticle films retained the high resistive contrast between the amorphous and crystalline phases necessary for PCRAM operation. After design optimization, PCRAM cells were fabricated utilizing the nanoparticles as a solution processable precursor to the PCM. Completed cells showed reversible switching, including threshold switching, characteristic of PCRAM operation. Cycling up to 200 times, the cells are the best performing solution processed PCRAM devices reported to date, suggesting that colloidal nanoparticles are a viable route to PCMs.

Phase Change Memory

Phase Change Memory PDF Author: Andrea Redaelli
Publisher: Springer
ISBN: 3319690531
Category : Technology & Engineering
Languages : en
Pages : 342

Get Book Here

Book Description
This book describes the physics of phase change memory devices, starting from basic operation to reliability issues. The book gives a comprehensive overlook of PCM with particular attention to the electrical transport and the phase transition physics between the two states. The book also contains design engineering details on PCM cell architecture, PCM cell arrays (including electrical circuit management), as well as the full spectrum of possible future applications.

Phase Change Materials

Phase Change Materials PDF Author: Simone Raoux
Publisher: Springer Science & Business Media
ISBN: 0387848746
Category : Technology & Engineering
Languages : en
Pages : 430

Get Book Here

Book Description
"Phase Change Materials: Science and Applications" provides a unique introduction of this rapidly developing field. Clearly written and well-structured, this volume describes the material science of these fascinating materials from a theoretical and experimental perspective. Readers will find an in-depth description of their existing and potential applications in optical and solid state storage devices as well as reconfigurable logic applications. Researchers, graduate students and scientists with an interest in this field will find "Phase Change Materials" to be a valuable reference.

Emerging Nanoelectronic Devices

Emerging Nanoelectronic Devices PDF Author: An Chen
Publisher: John Wiley & Sons
ISBN: 1118447743
Category : Technology & Engineering
Languages : en
Pages : 570

Get Book Here

Book Description
Emerging Nanoelectronic Devices focuses on the future direction of semiconductor and emerging nanoscale device technology. As the dimensional scaling of CMOS approaches its limits, alternate information processing devices and microarchitectures are being explored to sustain increasing functionality at decreasing cost into the indefinite future. This is driving new paradigms of information processing enabled by innovative new devices, circuits, and architectures, necessary to support an increasingly interconnected world through a rapidly evolving internet. This original title provides a fresh perspective on emerging research devices in 26 up to date chapters written by the leading researchers in their respective areas. It supplements and extends the work performed by the Emerging Research Devices working group of the International Technology Roadmap for Semiconductors (ITRS). Key features: • Serves as an authoritative tutorial on innovative devices and architectures that populate the dynamic world of “Beyond CMOS” technologies. • Provides a realistic assessment of the strengths, weaknesses and key unknowns associated with each technology. • Suggests guidelines for the directions of future development of each technology. • Emphasizes physical concepts over mathematical development. • Provides an essential resource for students, researchers and practicing engineers.

Advances in Nanotechnology Research and Application: 2012 Edition

Advances in Nanotechnology Research and Application: 2012 Edition PDF Author:
Publisher: ScholarlyEditions
ISBN: 1464990468
Category : Technology & Engineering
Languages : en
Pages : 14170

Get Book Here

Book Description
Advances in Nanotechnology Research and Application / 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Nanotechnology. The editors have built Advances in Nanotechnology Research and Application / 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Nanotechnology in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Nanotechnology Research and Application / 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Advances in Neuromorphic Memristor Science and Applications

Advances in Neuromorphic Memristor Science and Applications PDF Author: Robert Kozma
Publisher: Springer Science & Business Media
ISBN: 9400744919
Category : Medical
Languages : en
Pages : 318

Get Book Here

Book Description
Physical implementation of the memristor at industrial scale sparked the interest from various disciplines, ranging from physics, nanotechnology, electrical engineering, neuroscience, to intelligent robotics. As any promising new technology, it has raised hopes and questions; it is an extremely challenging task to live up to the high expectations and to devise revolutionary and feasible future applications for memristive devices. The possibility of gathering prominent scientists in the heart of the Silicon Valley given by the 2011 International Joint Conference on Neural Networks held in San Jose, CA, has offered us the unique opportunity of organizing a series of special events on the present status and future perspectives in neuromorphic memristor science. This book presents a selection of the remarkable contributions given by the leaders of the field and it may serve as inspiration and future reference to all researchers that want to explore the extraordinary possibilities given by this revolutionary concept.

Atomic Layer Deposition for Semiconductors

Atomic Layer Deposition for Semiconductors PDF Author: Cheol Seong Hwang
Publisher: Springer Science & Business Media
ISBN: 146148054X
Category : Science
Languages : en
Pages : 266

Get Book Here

Book Description
Offering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device.

Magnetic Nanoparticles

Magnetic Nanoparticles PDF Author: Evgeny Katz
Publisher: MDPI
ISBN: 3039282689
Category : Medical
Languages : en
Pages : 406

Get Book Here

Book Description
The present book covers all research areas related to magnetic nanoparticles, magnetic nanorods, and other magnetic nanospecies, their preparation, characterization, and various applications, specifically emphasizing biomedical applications. The chapters written by the leading experts cover different subareas of the science and technology related to various magnetic nanospecies—providing broad coverage of this multifaceted area and its applications. The different topics addressed in this book will be of great interest to the interdisciplinary community active in the area of nanoscience and nanotechnology. It is hoped that this collection and its various chapters will be important and beneficial for researchers and students working in various areas related to bionanotechnology, materials science, biosensor applications, medicine, and many others. Furthermore, this book is aimed at attracting young scientists and introducing them to this field, in addition to providing newcomers with an enormous collection of literature references.

Solid State Composites and Hybrid Systems

Solid State Composites and Hybrid Systems PDF Author: Rada Savkina
Publisher: CRC Press
ISBN: 1351176064
Category : Science
Languages : en
Pages : 196

Get Book Here

Book Description
Solid state composites and hybrid systems offer multifunctional applications in various fields of human life, demonstrating solutions to the key problems of the environment, human health, biology, medicine, electronics, energy harvesting and storage. Exploring this innovative field of research, this book details the wide range of materials, techniques, and approaches utilised in composite and hybrid structures in recent years. It will be of interest not only for experienced researchers but also for postgraduate students and young researchers entering the fields of nanoscience, material sciences, and bioengineering. Features: Contains the latest research developments in the materials, techniques, patents, and approaches in the field Includes both fundamental aspects and applied research Edited by two highly experienced researchers

Charge-Trapping Non-Volatile Memories

Charge-Trapping Non-Volatile Memories PDF Author: Panagiotis Dimitrakis
Publisher: Springer
ISBN: 3319152904
Category : Technology & Engineering
Languages : en
Pages : 219

Get Book Here

Book Description
This book describes the basic technologies and operation principles of charge-trapping non-volatile memories. The authors explain the device physics of each device architecture and provide a concrete description of the materials involved as well as the fundamental properties of the technology. Modern material properties used as charge-trapping layers, for new applications are introduced.