Colloidal Cu/ZnO Nanocatalysts for CO2 Hydrogenation to Methanol

Colloidal Cu/ZnO Nanocatalysts for CO2 Hydrogenation to Methanol PDF Author: Jonathan Weiner
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Colloidal Cu/ZnO Nanocatalysts for CO2 Hydrogenation to Methanol

Colloidal Cu/ZnO Nanocatalysts for CO2 Hydrogenation to Methanol PDF Author: Jonathan Weiner
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Plasma Catalysis

Plasma Catalysis PDF Author: Annemie Bogaerts
Publisher: MDPI
ISBN: 3038977500
Category : Technology & Engineering
Languages : en
Pages : 248

Get Book Here

Book Description
Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC remediation). Plasma catalysis allows thermodynamically difficult reactions to proceed at ambient pressure and temperature, due to activation of the gas molecules by energetic electrons created in the plasma. However, plasma is very reactive but not selective, and thus a catalyst is needed to improve the selectivity. In spite of the growing interest in plasma catalysis, the underlying mechanisms of the (possible) synergy between plasma and catalyst are not yet fully understood. Indeed, plasma catalysis is quite complicated, as the plasma will affect the catalyst and vice versa. Moreover, due to the reactive plasma environment, the most suitable catalysts will probably be different from thermal catalysts. More research is needed to better understand the plasma–catalyst interactions, in order to further improve the applications.

Methanol: The Basic Chemical and Energy Feedstock of the Future

Methanol: The Basic Chemical and Energy Feedstock of the Future PDF Author: Martin Bertau
Publisher: Springer Science & Business Media
ISBN: 3642397093
Category : Technology & Engineering
Languages : en
Pages : 699

Get Book Here

Book Description
Methanol - The Chemical and Energy Feedstock of the Future offers a visionary yet unbiased view of methanol technology. Based on the groundbreaking 1986 publication "Methanol" by Friedrich Asinger, this book includes contributions by more than 40 experts from industry and academia. The authors and editors provide a comprehensive exposition of methanol chemistry and technology which is useful for a wide variety of scientists working in chemistry and energy related industries as well as academic researchers and even decision-makers and organisations concerned with the future of chemical and energy feedstocks.

Surface Organometallic Chemistry: Molecular Approaches to Surface Catalysis

Surface Organometallic Chemistry: Molecular Approaches to Surface Catalysis PDF Author: Jean-Marie Basset
Publisher: Springer Science & Business Media
ISBN: 9400929714
Category : Science
Languages : en
Pages : 340

Get Book Here

Book Description
Surface organometallic chemistry is a new field bringing together researchers from organometallic, inorganic, and surface chemistry and catalysis. Topics ranging from reaction mechanisms to catalyst preparation are considered from a molecular basis, according to which the "active site" on a catalyst surface has a supra-molecular character. This. the first book on the subject, is the outcome of a NATO Workshop held in Le Rouret. France, in May. 1986. It is our hope that the following chapters and the concluding summary of recommendations for research may help to provide a definition of surface organometallic chemistry. Besides catalysis. the central theme of the Workshop, four main topics are considered: 1) Reactions of organometallics with surfaces of metal oxides, metals. and zeolites; 2) Molecular models of surfaces, metal oxides, and metals; 3) Molecular approaches to the mechanisms of surface reactions; 4) Synthesis and modification of zeolites and related microporous solids. Most surface organometallic chemistry has been carried out on amorphous high-surf ace-area metal oxides such as silica. alumina. magnesia, and titania. The first chapter. contributed by KNOZINGER. gives a short summary of the structure and reactivity of metal oxide surfaces. Most of our understanding of these surfaces is based on acid base and redox chemistry; this chemistry has developed from X-ray and spectroscopic data, and much has been inferred from the structures and reactivities of adsorbed organic probe molecules. There are major opportunities for extending this understanding by use of well-defined (single crystal) oxide surfaces and organometallic probe molecules.

Adsorption and Deactivation Characteristics of Cu/ZnO-Based Catalysts for Methanol Synthesis from Carbon Dioxide

Adsorption and Deactivation Characteristics of Cu/ZnO-Based Catalysts for Methanol Synthesis from Carbon Dioxide PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 12

Get Book Here

Book Description
The adsorption and deactivation characteristics of coprecipitated Cu/ZnO-based catalysts were examined and correlated to their performance in methanol synthesis from CO2 hydrogenation. The addition of Ga2O3 and Y2O3 promoters is shown to increase the Cu surface area and CO2/H2 adsorption capacities of the catalysts and enhance methanol synthesis activity. Infrared studies showed that CO2 adsorbs spontaneously on these catalysts at room temperature as both monoand bi-dentate carbonate species. These weakly bound species desorb completely from the catalyst surface by 200 °C while other carbonate species persist up to 500 °C. Characterization using N2O decomposition, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy (EDX) analysis clearly indicated that Cu sintering is the main cause of catalyst deactivation. Ga and Y promotion improves the catalyst stability by suppressing the agglomeration of Cu and ZnO particles under pretreatment and reaction conditions.

Nanocatalysis

Nanocatalysis PDF Author: Ulrich Heiz
Publisher: Springer Science & Business Media
ISBN: 3540326464
Category : Technology & Engineering
Languages : en
Pages : 514

Get Book Here

Book Description
Nanocatalysis, a subdiscipline of nanoscience, seeks to control chemical reactions by changing the size, dimensionality, chemical composition, and morphology of the reaction center and by changing the kinetics using nanopatterning of the reaction center. This book offers a detailed pedagogical and methodological overview of the field. Readers discover many examples of current research, helping them explore new and emerging applications.

Carbon Dioxide Capture and Conversion

Carbon Dioxide Capture and Conversion PDF Author: Sonil Nanda
Publisher: Elsevier
ISBN: 0323900720
Category : Technology & Engineering
Languages : en
Pages : 338

Get Book Here

Book Description
Carbon Dioxide Capture and Conversion: Advanced Materials and Process provides information about the fundamental principles and recent development of various methods and processes for CO2 mitigation and transformation. Beginning with a brief overview of recent advancements in CO2 capture and valorization technologies, the book elaborates on CO2 capture and conversion by covering nanoporous materials, biomaterials, innovative solvents, advanced membrane technology, nanocatalyst synthesis and design, cutting-edge characterization techniques as well as reaction mechanisms and kinetics. In addition to techno-economic evaluation and life-cycle assessment for CO2 capture and conversion processes, future perspectives, opportunities and current challenges regarding these processes in terms of their industrial applications, are systematically discussed. Carbon Dioxide Capture and Conversion: Advanced Materials and Process is, therefore, an essential resource for academic researchers, postgraduates, scientists, and engineers seeking fundamental knowledge and practical applications for use in their research and development, studies and industrial operations. - Includes recent developments in nanomaterials and advanced processes implemented for CO2 capture and conversion - Contains state-of-the-art CO2 capture and conversion technology written by leading experts - Offers advanced techniques of nanomaterials synthesis, characterization, evaluation, and industrial implementation in a wide range of CO2 capture and conversion processes

Hydrogenation of CO2 to Methanol on CeOx/Cu(111) and ZnO/Cu(111) Catalysts

Hydrogenation of CO2 to Methanol on CeOx/Cu(111) and ZnO/Cu(111) Catalysts PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Get Book Here

Book Description
The role of the interface between a metal and oxide (CeOx-Cu and ZnO-Cu) is critical to the production of methanol through the hydrogenation of CO2 (CO2 + 3H2 2!CH3OH + H2O). The deposition of nanoparticles of CeOx or ZnO on Cu(111), [theta]oxi

Methanol Synthesis

Methanol Synthesis PDF Author: Jerzy Skrzypek
Publisher:
ISBN:
Category : Catalysis
Languages : en
Pages : 174

Get Book Here

Book Description


Preparation and Characterization of Cu/Zno Catalysts

Preparation and Characterization of Cu/Zno Catalysts PDF Author: Stefan Zander
Publisher: Sudwestdeutscher Verlag Fur Hochschulschriften AG
ISBN: 9783838150208
Category :
Languages : en
Pages : 132

Get Book Here

Book Description
Methanol is one of the most important industrial base chemicals and also a starting material for many organic syntheses. A steadily rising amount is used as fuel or fuel additive because methanol can serve as liquid hydrogen carrier. In the chemical industry, methanol is produced from synthesis gas over Cu/ZnO based catalysts. The catalyst is prepared by a multi-step synthesis (co-precipitation, calcination, reduction). Already in early stages of the preparation structural characteristics can provide indications for the resulting activity of the final catalyst. In order to investigate correlations between preparation parameters, microstructure and activity of Cu/ZnO based catalysts, the effects of the pH during co-precipitation and aging, use of MgO instead of ZnO and doping with Ga-ions were examined in the present work. Precursors, calcined and reduced samples were investigated with different methods (XRD, XRF, physisorption, TPR, RFC, UV-Vis spectroscopy, XAS, XPS, SEM, TEM) and selected samples were tested in methanol synthesis.