Colloid Mobilization and Transport in Contaminant Plumes

Colloid Mobilization and Transport in Contaminant Plumes PDF Author:
Publisher:
ISBN:
Category : Colloids
Languages : en
Pages : 40

Get Book Here

Book Description

Colloid Mobilization and Transport in Contaminant Plumes

Colloid Mobilization and Transport in Contaminant Plumes PDF Author:
Publisher:
ISBN:
Category : Colloids
Languages : en
Pages : 40

Get Book Here

Book Description


Colloidal Transport in Porous Media

Colloidal Transport in Porous Media PDF Author: Fritz H. Frimmel
Publisher: Springer Science & Business Media
ISBN: 3540713395
Category : Science
Languages : en
Pages : 294

Get Book Here

Book Description
This book covers the basics of abiotic colloid characterization, of biocolloids and biofilms, the resulting transport phenomena and their engineering aspects. The contributors comprise an international group of leading specialists devoted to colloidal sciences. The contributions include theoretical considerations, results from model experiments, and field studies. The information provided here will benefit students and scientists interested in the analytical, chemical, microbiological, geological and hydrological aspects of material transport in aquatic systems and soils.

Influences of Flow Transients and Porous Medium Heterogeneity on Colloid-Associated Contaminant Transport in the Vadose Zone

Influences of Flow Transients and Porous Medium Heterogeneity on Colloid-Associated Contaminant Transport in the Vadose Zone PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Our research is guided by an EMSP objective to improve conceptual and predictive models of contaminant movement in vadose-zone environments. As described in the report National Roadmap for Vadose-Zone Science and Technology [DOE, 2001], soil-water colloids are capable of adsorbing contaminants, such as radionuclides and metals, and facilitating their migration through the vadose zone and towards groundwater reservoirs. Our research centers on advancing understanding of this phenomenon. In particular, we are combining mathematical modeling with laboratory experimentation at pore and column scales to (1) elucidate the effects of porewater-flow transients on colloid mobilization in unsaturated porous media; (2) explore the sensitivity of colloid deposition rates to changes in porewater chemistry and colloid mineralogy; (3) develop mathematical models appropriate for simulating colloid mobilization, transport, and deposition under both steady-flow and transient-flow conditions; (4) identify mechanisms that govern mineral-colloid mobilization and deposition in unsaturated porous media; (5) quantify the effects of mineral-grain geometry and surface roughness on colloid-filtration rates; and (6) evaluate the influences of colloids on the transport of strontium and cesium (i.e., DOE-contaminants-of-concern) through soils and sediments.

Manipulation of Groundwater Colloids for Environmental Restoration

Manipulation of Groundwater Colloids for Environmental Restoration PDF Author: John McCarthy
Publisher: CRC Press
ISBN: 9780873718288
Category : Technology & Engineering
Languages : en
Pages : 412

Get Book Here

Book Description
This valuable resource discusses several strategies of manipulating colloids for environmental restoration, identifies advantages and disadvantages of each strategy, and considers obstacles limiting the application of each strategy. Approaches evaluated include the following: Chemical modification of subsurface systems to mobilize or deposit colloids in situ Altering the mobility of microorganisms to improve delivery of microbes for bioremediation Manipulating colloids or biocolloids (bacteria) to change aquifer permeability to either enhance bioremediation or create in situ barriers Introducing modified colloids, surfactants, and emulsions to control colloid mobility or to increase recovery of sorbed contaminants by pump and treat methods Manipulation of Groundwater Colloids for Environmental Restoration also contains short, focused research reports on specific studies relevant to the various approaches under consideration. Subjects covered range from mobility of organic macromolecules by controlled field injection experiments to new techniques that investigate surface chemistry and aggregation of inorganic colloids. Other topics discussed include the depositional behavior and transport of biocolloids in porous media, surfactants as modifiers of surface binding sites on colloids, and genetic engineering of microorganisms to serve as contaminant-scavenging biocolloids. Manipulation of Groundwater Colloids for Environmental Restoration is an excellent resource for research scientists in hydrology, chemistry, and microbiology; environmental consultants; regulators; environmental engineers; bioremediation microbiologists; and engineers.

Colloid and Surfactant Transport Modeling Through Agricultural Soil

Colloid and Surfactant Transport Modeling Through Agricultural Soil PDF Author: Sandip Raman Patil
Publisher:
ISBN:
Category : Civil engineering
Languages : en
Pages :

Get Book Here

Book Description
ABSTRACT: National Water-Quality Assessment Program (NAWQA) was designed just after the U.S. Geological was established. The primary objective of the NAWQA was to understand the key processes controlling contaminant fate and transport into the Nation's water resources. In particular, wide use of pesticides and fertilizers in agricultural field can impact on the quality of surface and ground waters. Contaminants can be carried to the water bodies by several ways. In colloid-facilitated transport process colloidal particles serves as a transport media for the contaminants. Colloid release from the agricultural soil under unsaturated conditions is controlled by the hydrodynamic force, capillary force and electrostatic force that is determined by the solution chemistry in terms of solution ionic strength and pH. In this research, colloid release from the agricultural soil was investigated using an intact soil column collected from an agricultural site in Gadsden County of Florida. Colloid release was monitored and the colloid release curve was simulated using an implicit, finite-difference scheme to obtain the colloid release coefficient. It was found that the hydrodynamic force and electrostatic force overcame the capillary force under the experimental conditions of this research and consequently, colloids were released. For the colloid release, solution chemistry played a key role by controlling the colloid repulsive electrostatic force within the pore system. Colloid release exponentially decreased with the increase of solution ionic strength and increased with the increase of solution pH. Colloid release was finally found to be correlated to the colloid repulsive electrostatic force within the pore system, i.e., the greater the repulsive electrostatic force, more colloids were released. In situ colloid mobilization and transport has been studied under both saturated and unsaturated conditions. In saturated conditions, the controlling parameters are solution ionic strength and pH. Colloid mobilization and transport have been modeled by the advection-dispersion equation with a first-order colloid release. The inverse version of these models can provide a platform to estimate transport parameters based on transport observations. In this research, we taken the advantages of existing contaminants transport models by fully utilizing them to investigate colloid interactions with the surrounding environment and provide parameter constraints for colloid transport modeling applications under saturated conditions. In natural systems, colloids present a potential health risk due to their propensity to associate with contaminants or in the case of certain biological colloids, inherent pathogenic nature. Although colloidal interactions have been studied for many years and much has been learned about the physical and chemical processes that control colloid retention, there still remains significant uncertainty about the processes that govern colloid release. The aim of this study was to investigate the release of in situ colloids as a function of soil depth. Colloid release from intact agricultural soil columns with variable length was investigated. Colloid release curves were simulated using an implicit, finite-difference scheme and colloid release rate coefficient was found to be an exponential function of the soil depth. The simulated results demonstrated that transport parameters were not consistent along the depth of the soil profile. Wetting agents wet hydrophobic soil by lowering the cohesive and/or adhesive surface tension, which allows the water to spread out more evenly and allows for better penetration into the hydrophobic soils. While enhancing water penetration, wetting agent applications may bring adverse impact on the soil and groundwater at the same time. The residual organic phase in the soil pores poses a long-term source of groundwater contamination. After use, residual wetting agents and their degradation products are discharged to groundwater or directly to surface waters, then dispersed into different environmental compartments. In order to assess their environmental risks, we need to understand the distribution, behavior, fate and biological effects of these surfactants in the environment. This research was designed to investigate the application of nonionic wetting agents in agricultural soils. Performance of nonionic surfactants in intact soil columns collected from agricultural soils was explored and related to the soil and wetting agent properties. In addition, the impact of the organic concentration of wetting agent fate and transport was investigated. The transport of wetting agents in the agricultural soil columns was simulated using the proposed transport models and subsequently, the effect of organic compounds on wetting agent transport was quantified.

Influences of Flow Transients and Porous Medium Heterogeneity on Colloid Associated Contaminant Transport in the Vadose Zone

Influences of Flow Transients and Porous Medium Heterogeneity on Colloid Associated Contaminant Transport in the Vadose Zone PDF Author: Joseph Ryan
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
We are investigating the role of colloids in the movement of radionuclides through water unsaturated porous media. This research is guided by a key objective of the Environmental Management Science Program (EMSP), which is to improve conceptual and predictive models for contaminant movement in complex vadose zone environments. In the report entitled National Roadmap for Vadose Zone Science and Technology [DOE, 2001], increases in the understanding of colloid-contaminant interactions, colloid mobilization, and colloid deposition within unsaturated soils are cited as requisite needs for predicting contaminant fate and distribution in the vadose zone. We seek to address these needs by pursuing three overarching goals: (1) identify the mechanisms that govern colloid mobilization, transport, and deposition within unsaturated porous media; (2) quantify the role of colloids in scavenging and facilitating the transport of radionuclides; and (3) develop and test a mathematical model suitable for simulating the movement of colloid associated radionuclides through variably saturated porous media.

Influences of Flow Transients and Porous Medium Heterogeneity on Colloid-Associated Contaminant Transport in the Vadose Zone

Influences of Flow Transients and Porous Medium Heterogeneity on Colloid-Associated Contaminant Transport in the Vadose Zone PDF Author: James Saiers
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Radionuclides, metals, and dense non-aqueous phase liquids have contaminated about six billion cubic meters of soil at Department of Energy (DOE) sites. The subsurface transport of many of these contaminants is facilitated by colloids (i.e., microscopic, waterborne particles). The first step in the transport of contaminants from their sources to off-site surface water and groundwater is migration through the vadose zone. Developing our understanding of the migration of colloids and colloid-associated contaminants through the vadose zone is critical to assessing and controlling the release of contaminants from DOE sites. In this study, we examined the mobilization, transport, and filtration (retention) of mineral colloids and colloid-associated radionuclides within unsaturated porous media. This investigation involved laboratory column experiments designed to identify properties that affect colloid mobilization and retention and pore-scale visualization experiments designed to elucidate mechanisms that govern these colloid-mass transfer processes. The experiments on colloid mobilization and retention were supplemented with experiments on radionuclide transport through porous media and on radionuclide adsorption to mineral colloids. Observations from all of these experiments - the column and visualization experiments with colloids and the experiments with radionuclides - were used to guide the development of mathematical models appropriate for describing colloids and colloid-facilitated radionuclide transport through the vadose zone.

Colloids in Groundwater

Colloids in Groundwater PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Get Book Here

Book Description
Our originally stated objectives included: (1) development of a quantitative source function for colloid mobilization to groundwater, and (2) assessment of the most important colloidal phases to which nonpolar compounds sorb. We have been pursuing a series of studies to elucidate the roles of colloidal phases in subsurface environments. Most notably, we have discovered the critical role of secondary cementitious phases like goethite. We developed a new procedure for measuring ''surface iron oxides'' which is a great improvement over earlier methodologies. Currently, we are developing a unifying model with which we can predict the mobilization of colloids to groundwater flowing through such porous media. Also, we have been able to show that groundwater samples contain colloidal phases in sufficient quantities and of suitable properties to enhance the mobile load of toxic compounds like polycyclic aromatic hydrocarbons. Finally, we have synthesized our varied field investigations from sites in Massachusetts, New Jersey, Delaware, Nevada, Connecticut, and New York to yield a protocol for other researchers interested in evaluating colloids in groundwater. These accomplishments are discussed in more detail below. Through these efforts, we have become increasingly convinced of the central role played by colloidal phases in numerous subsurface phenomena controlling contaminant fates.

U.S. Geological Survey Toxic Substances Hydrology Program: Subsurface contaminationfrom point sources

U.S. Geological Survey Toxic Substances Hydrology Program: Subsurface contaminationfrom point sources PDF Author: U.S. Geological Survey Toxic Substances Hydrology Program. Technical Meeting
Publisher:
ISBN:
Category : Water
Languages : en
Pages : 876

Get Book Here

Book Description


U.S. Geological Survey Toxic Substances Hydrology Program

U.S. Geological Survey Toxic Substances Hydrology Program PDF Author: U.S. Geological Survey Toxic Substances Hydrology Program. Technical Meeting
Publisher:
ISBN:
Category : Water
Languages : en
Pages : 868

Get Book Here

Book Description