Collocation Methods for Volterra Integral and Related Functional Differential Equations

Collocation Methods for Volterra Integral and Related Functional Differential Equations PDF Author: Hermann Brunner
Publisher: Cambridge University Press
ISBN: 9780521806152
Category : Mathematics
Languages : en
Pages : 620

Get Book Here

Book Description
Collocation based on piecewise polynomial approximation represents a powerful class of methods for the numerical solution of initial-value problems for functional differential and integral equations arising in a wide spectrum of applications, including biological and physical phenomena. The present book introduces the reader to the general principles underlying these methods and then describes in detail their convergence properties when applied to ordinary differential equations, functional equations with (Volterra type) memory terms, delay equations, and differential-algebraic and integral-algebraic equations. Each chapter starts with a self-contained introduction to the relevant theory of the class of equations under consideration. Numerous exercises and examples are supplied, along with extensive historical and bibliographical notes utilising the vast annotated reference list of over 1300 items. In sum, Hermann Brunner has written a treatise that can serve as an introduction for students, a guide for users, and a comprehensive resource for experts.

Volterra Integral Equations

Volterra Integral Equations PDF Author: Hermann Brunner
Publisher: Cambridge University Press
ISBN: 1107098726
Category : Mathematics
Languages : en
Pages : 405

Get Book Here

Book Description
See publisher description :

Linear and Nonlinear Integral Equations

Linear and Nonlinear Integral Equations PDF Author: Abdul-Majid Wazwaz
Publisher: Springer Science & Business Media
ISBN: 3642214495
Category : Mathematics
Languages : en
Pages : 639

Get Book Here

Book Description
Linear and Nonlinear Integral Equations: Methods and Applications is a self-contained book divided into two parts. Part I offers a comprehensive and systematic treatment of linear integral equations of the first and second kinds. The text brings together newly developed methods to reinforce and complement the existing procedures for solving linear integral equations. The Volterra integral and integro-differential equations, the Fredholm integral and integro-differential equations, the Volterra-Fredholm integral equations, singular and weakly singular integral equations, and systems of these equations, are handled in this part by using many different computational schemes. Selected worked-through examples and exercises will guide readers through the text. Part II provides an extensive exposition on the nonlinear integral equations and their varied applications, presenting in an accessible manner a systematic treatment of ill-posed Fredholm problems, bifurcation points, and singular points. Selected applications are also investigated by using the powerful Padé approximants. This book is intended for scholars and researchers in the fields of physics, applied mathematics and engineering. It can also be used as a text for advanced undergraduate and graduate students in applied mathematics, science and engineering, and related fields. Dr. Abdul-Majid Wazwaz is a Professor of Mathematics at Saint Xavier University in Chicago, Illinois, USA.

Integral Equations

Integral Equations PDF Author: Wolfgang Hackbusch
Publisher: Birkhäuser
ISBN: 3034892152
Category : Mathematics
Languages : en
Pages : 377

Get Book Here

Book Description
The theory of integral equations has been an active research field for many years and is based on analysis, function theory, and functional analysis. On the other hand, integral equations are of practical interest because of the «boundary integral equation method», which transforms partial differential equations on a domain into integral equations over its boundary. This book grew out of a series of lectures given by the author at the Ruhr-Universitat Bochum and the Christian-Albrecht-Universitat zu Kiel to students of mathematics. The contents of the first six chapters correspond to an intensive lecture course of four hours per week for a semester. Readers of the book require background from analysis and the foundations of numeri cal mathematics. Knowledge of functional analysis is helpful, but to begin with some basic facts about Banach and Hilbert spaces are sufficient. The theoretical part of this book is reduced to a minimum; in Chapters 2, 4, and 5 more importance is attached to the numerical treatment of the integral equations than to their theory. Important parts of functional analysis (e. g. , the Riesz-Schauder theory) are presented without proof. We expect the reader either to be already familiar with functional analysis or to become motivated by the practical examples given here to read a book about this topic. We recall that also from a historical point of view, functional analysis was initially stimulated by the investigation of integral equations.

Numerical Solution of Integral Equations

Numerical Solution of Integral Equations PDF Author: Michael A. Golberg
Publisher: Springer Science & Business Media
ISBN: 1489925937
Category : Mathematics
Languages : en
Pages : 428

Get Book Here

Book Description
In 1979, I edited Volume 18 in this series: Solution Methods for Integral Equations: Theory and Applications. Since that time, there has been an explosive growth in all aspects of the numerical solution of integral equations. By my estimate over 2000 papers on this subject have been published in the last decade, and more than 60 books on theory and applications have appeared. In particular, as can be seen in many of the chapters in this book, integral equation techniques are playing an increas ingly important role in the solution of many scientific and engineering problems. For instance, the boundary element method discussed by Atkinson in Chapter 1 is becoming an equal partner with finite element and finite difference techniques for solving many types of partial differential equations. Obviously, in one volume it would be impossible to present a complete picture of what has taken place in this area during the past ten years. Consequently, we have chosen a number of subjects in which significant advances have been made that we feel have not been covered in depth in other books. For instance, ten years ago the theory of the numerical solution of Cauchy singular equations was in its infancy. Today, as shown by Golberg and Elliott in Chapters 5 and 6, the theory of polynomial approximations is essentially complete, although many details of practical implementation remain to be worked out.

Computational Methods for Integral Equations

Computational Methods for Integral Equations PDF Author: L. M. Delves
Publisher: CUP Archive
ISBN: 9780521357968
Category : Mathematics
Languages : en
Pages : 392

Get Book Here

Book Description
This textbook provides a readable account of techniques for numerical solutions.

Spectral Methods

Spectral Methods PDF Author: Jie Shen
Publisher: Springer Science & Business Media
ISBN: 3540710418
Category : Mathematics
Languages : en
Pages : 481

Get Book Here

Book Description
Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online to help the readers to develop their own spectral codes for their specific applications.

The Computational Complexity of Differential and Integral Equations

The Computational Complexity of Differential and Integral Equations PDF Author: Arthur G. Werschulz
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 352

Get Book Here

Book Description
Complexity theory has become an increasingly important theme in mathematical research. This book deals with an approximate solution of differential or integral equations by algorithms using incomplete information. This situation often arises for equations of the form Lu = f where f is some function defined on a domain and L is a differential operator. We do not have complete information about f. For instance, we might only know its value at a finite number of points in the domain, or the values of its inner products with a finite set of known functions. Consequently the best that can be hoped for is to solve the equation to within a given accuracy at minimal cost or complexity. In this book, the theory of the complexity of the solution to differential and integral equations is developed. The relationship between the worst case setting and other (sometimes more tractable) related settings, such as the average case, probabilistic, asymptotic, and randomized settings, is also discussed. The author determines the inherent complexity of the problem and finds optimal algorithms (in the sense of having minimal cost). Furthermore, he studies to what extent standard algorithms (such as finite element methods for elliptic problems) are optimal. This approach is discussed in depth in the context of two-point boundary value problems, linear elliptic partial differential equations, integral equations, ordinary differential equations, and ill-posed problems. As a result, this volume should appeal to mathematicians and numerical analysts working on the approximate solution of differential and integral equations, as well as to complexity theorists addressing related questions in this area.

Computational Methods for Linear Integral Equations

Computational Methods for Linear Integral Equations PDF Author: Prem Kythe
Publisher: Springer Science & Business Media
ISBN: 1461201012
Category : Mathematics
Languages : en
Pages : 525

Get Book Here

Book Description
This book presents numerical methods and computational aspects for linear integral equations. Such equations occur in various areas of applied mathematics, physics, and engineering. The material covered in this book, though not exhaustive, offers useful techniques for solving a variety of problems. Historical information cover ing the nineteenth and twentieth centuries is available in fragments in Kantorovich and Krylov (1958), Anselone (1964), Mikhlin (1967), Lonseth (1977), Atkinson (1976), Baker (1978), Kondo (1991), and Brunner (1997). Integral equations are encountered in a variety of applications in many fields including continuum mechanics, potential theory, geophysics, electricity and mag netism, kinetic theory of gases, hereditary phenomena in physics and biology, renewal theory, quantum mechanics, radiation, optimization, optimal control sys tems, communication theory, mathematical economics, population genetics, queue ing theory, and medicine. Most of the boundary value problems involving differ ential equations can be converted into problems in integral equations, but there are certain problems which can be formulated only in terms of integral equations. A computational approach to the solution of integral equations is, therefore, an essential branch of scientific inquiry.

The Numerical Solution of Volterra Equations

The Numerical Solution of Volterra Equations PDF Author: Hermann Brunner
Publisher: North Holland
ISBN:
Category : Mathematics
Languages : en
Pages : 608

Get Book Here

Book Description
This monograph presents the theory and modern numerical analysis of Volterra integral and integro-differential equations, including equations with weakly singular kernels. While the research worker will find an up-to-date account of recent developments of numerical methods for such equations, including an extensive bibliography, the authors have tried to make the book accessible to the non-specialist possessing only a limited knowledge of numerical analysis. After an introduction to the theory of Volterra equations and to numerical integration, the book covers linear methods and Runge-Kutta methods, collocation methods based on polynomial spline functions, stability of numerical methods, and it surveys computer programs for Volterra integral and integro-differential equations.