Collective Classical And Quantum Fields: In Plasmas, Superconductors, Superfluid 3he, And Liquid Crystals

Collective Classical And Quantum Fields: In Plasmas, Superconductors, Superfluid 3he, And Liquid Crystals PDF Author: Hagen Kleinert
Publisher: World Scientific Publishing Company
ISBN: 9813223960
Category : Science
Languages : en
Pages : 423

Get Book Here

Book Description
This is an introductory book dealing with collective phenomena in many-body systems. A gas of bosons or fermions can show oscillations of various types of density. These are described by different combinations of field variables. Especially delicate is the competition of these variables. In superfluid 3He, for example, the atoms can be attracted to each other by molecular forces, whereas they are repelled from each other at short distance due to a hardcore repulsion. The attraction gives rise to Cooper pairs, and the repulsion is overcome by paramagnon oscillations. The combination is what finally led to the discovery of superfluidity in 3He. In general, the competition between various channels can most efficiently be studied by means of a classical version of the Hubbard-Stratonovich transformation.A gas of electrons is controlled by the interplay of plasma oscillations and pair formation. In a system of rod- or disc-like molecules, liquid crystals are observed with directional orientations that behave in unusual five-fold or seven-fold symmetry patterns. The existence of such a symmetry was postulated in 1975 by the author and K Maki. An aluminium material of this type was later manufactured by Dan Shechtman which won him the 2014 Nobel prize. The last chapter presents some solvable models, one of which was the first to illustrate the existence of broken supersymmetry in nuclei.

Collective Classical And Quantum Fields: In Plasmas, Superconductors, Superfluid 3he, And Liquid Crystals

Collective Classical And Quantum Fields: In Plasmas, Superconductors, Superfluid 3he, And Liquid Crystals PDF Author: Hagen Kleinert
Publisher: World Scientific Publishing Company
ISBN: 9813223960
Category : Science
Languages : en
Pages : 423

Get Book Here

Book Description
This is an introductory book dealing with collective phenomena in many-body systems. A gas of bosons or fermions can show oscillations of various types of density. These are described by different combinations of field variables. Especially delicate is the competition of these variables. In superfluid 3He, for example, the atoms can be attracted to each other by molecular forces, whereas they are repelled from each other at short distance due to a hardcore repulsion. The attraction gives rise to Cooper pairs, and the repulsion is overcome by paramagnon oscillations. The combination is what finally led to the discovery of superfluidity in 3He. In general, the competition between various channels can most efficiently be studied by means of a classical version of the Hubbard-Stratonovich transformation.A gas of electrons is controlled by the interplay of plasma oscillations and pair formation. In a system of rod- or disc-like molecules, liquid crystals are observed with directional orientations that behave in unusual five-fold or seven-fold symmetry patterns. The existence of such a symmetry was postulated in 1975 by the author and K Maki. An aluminium material of this type was later manufactured by Dan Shechtman which won him the 2014 Nobel prize. The last chapter presents some solvable models, one of which was the first to illustrate the existence of broken supersymmetry in nuclei.

Condensed Matter Field Theory

Condensed Matter Field Theory PDF Author: Alexander Altland
Publisher: Cambridge University Press
ISBN: 0521769752
Category : Science
Languages : en
Pages : 785

Get Book Here

Book Description
This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.

Collective Electrodynamics

Collective Electrodynamics PDF Author: Carver A. Mead
Publisher: MIT Press
ISBN: 9780262632607
Category : Science
Languages : en
Pages : 162

Get Book Here

Book Description
In this book Carver Mead offers a radically new approach to the standard problems of electromagnetic theory. Motivated by the belief that the goal of scientific research should be the simplification and unification of knowledge, he describes a new way of doing electrodynamics—collective electrodynamics—that does not rely on Maxwell's equations, but rather uses the quantum nature of matter as its sole basis. Collective electrodynamics is a way of looking at how electrons interact, based on experiments that tell us about the electrons directly. (As Mead points out, Maxwell had no access to these experiments.) The results Mead derives for standard electromagnetic problems are identical to those found in any text. Collective electrodynamics reveals, however, that quantities that we usually think of as being very different are, in fact, the same—that electromagnetic phenomena are simple and direct manifestations of quantum phenomena. Mead views his approach as a first step toward reformulating quantum concepts in a clear and comprehensible manner. The book is divided into five sections: magnetic interaction of steady currents, propagating waves, electromagnetic energy, radiation in free space, and electromagnetic interaction of atoms. In an engaging preface, Mead tells how his approach to electromagnetic theory was inspired by his interaction with Richard Feynman.

Ultracold Quantum Fields

Ultracold Quantum Fields PDF Author: Henk T. C. Stoof
Publisher: Springer Science & Business Media
ISBN: 1402087632
Category : Technology & Engineering
Languages : en
Pages : 485

Get Book Here

Book Description
On June 19th 1999, the European Ministers of Education signed the Bologna Dec laration, with which they agreed that the European university education should be uniformized throughout Europe and based on the two cycle bachelor master’s sys tem. The Institute for Theoretical Physics at Utrecht University quickly responded to this new challenge and created an international master’s programme in Theoret ical Physics which started running in the summer of 2000. At present, the master’s programme is a so called prestige master at Utrecht University, and it aims at train ing motivated students to become sophisticated researchers in theoretical physics. The programme is built on the philosophy that modern theoretical physics is guided by universal principles that can be applied to any sub?eld of physics. As a result, the basis of the master’s programme consists of the obligatory courses Statistical Field Theory and Quantum Field Theory. These focus in particular on the general concepts of quantum ?eld theory, rather than on the wide variety of possible applica tions. These applications are left to optional courses that build upon the ?rm concep tual basis given in the obligatory courses. The subjects of these optional courses in clude, for instance, Strongly Correlated Electrons, Spintronics, Bose Einstein Con densation, The Standard Model, Cosmology, and String Theory.

Quantum Field Theory in a Nutshell

Quantum Field Theory in a Nutshell PDF Author: Anthony Zee
Publisher: Princeton University Press
ISBN: 1400835321
Category : Science
Languages : en
Pages : 605

Get Book Here

Book Description
A fully updated edition of the classic text by acclaimed physicist A. Zee Since it was first published, Quantum Field Theory in a Nutshell has quickly established itself as the most accessible and comprehensive introduction to this profound and deeply fascinating area of theoretical physics. Now in this fully revised and expanded edition, A. Zee covers the latest advances while providing a solid conceptual foundation for students to build on, making this the most up-to-date and modern textbook on quantum field theory available. This expanded edition features several additional chapters, as well as an entirely new section describing recent developments in quantum field theory such as gravitational waves, the helicity spinor formalism, on-shell gluon scattering, recursion relations for amplitudes with complex momenta, and the hidden connection between Yang-Mills theory and Einstein gravity. Zee also provides added exercises, explanations, and examples, as well as detailed appendices, solutions to selected exercises, and suggestions for further reading. The most accessible and comprehensive introductory textbook available Features a fully revised, updated, and expanded text Covers the latest exciting advances in the field Includes new exercises Offers a one-of-a-kind resource for students and researchers Leading universities that have adopted this book include: Arizona State University Boston University Brandeis University Brown University California Institute of Technology Carnegie Mellon College of William & Mary Cornell Harvard University Massachusetts Institute of Technology Northwestern University Ohio State University Princeton University Purdue University - Main Campus Rensselaer Polytechnic Institute Rutgers University - New Brunswick Stanford University University of California - Berkeley University of Central Florida University of Chicago University of Michigan University of Montreal University of Notre Dame Vanderbilt University Virginia Tech University

Particles And Quantum Fields

Particles And Quantum Fields PDF Author: Hagen Kleinert
Publisher: World Scientific
ISBN: 9814740926
Category : Science
Languages : en
Pages : 1628

Get Book Here

Book Description
This is an introductory book on elementary particles and their interactions. It starts out with many-body Schrödinger theory and second quantization and leads, via its generalization, to relativistic fields of various spins and to gravity. The text begins with the best known quantum field theory so far, the quantum electrodynamics of photon and electrons (QED). It continues by developing the theory of strong interactions between the elementary constituents of matter (quarks). This is possible due to the property called asymptotic freedom. On the way one has to tackle the problem of removing various infinities by renormalization. The divergent sums of infinitely many diagrams are performed with the renormalization group or by variational perturbation theory (VPT). The latter is an outcome of the Feynman-Kleinert variational approach to path integrals discussed in two earlier books of the author, one representing a comprehensive treatise on path integrals, the other dealing with critial phenomena. Unlike ordinary perturbation theory, VPT produces uniformly convergent series which are valid from weak to strong couplings, where they describe critical phenomena.The present book develops the theory of effective actions which allow to treat quantum phenomena with classical formalism. For example, it derives the observed anomalous power laws of strongly interacting theories from an extremum of the action. Their fluctuations are not based on Gaussian distributions, as in the perturbative treatment of quantum field theories, or in asymptotically-free theories, but on deviations from the average which are much larger and which obey power-like distributions.Exactly solvable models are discussed and their physical properties are compared with those derived from general methods. In the last chapter we discuss the problem of quantizing the classical theory of gravity.

Quantum Field Theory for Economics and Finance

Quantum Field Theory for Economics and Finance PDF Author: B. E. Baaquie
Publisher: Cambridge University Press
ISBN: 1108423159
Category : Business & Economics
Languages : en
Pages : 717

Get Book Here

Book Description
This book provides an introduction to how the mathematical tools from quantum field theory can be applied to economics and finance. Providing a range of quantum mathematical techniques for designing financial instruments, it demonstrates how a range of topics have quantum mechanical formulations, from asset pricing to interest rates.

Quantum Field Theory of Non-equilibrium States

Quantum Field Theory of Non-equilibrium States PDF Author: Jørgen Rammer
Publisher: Cambridge University Press
ISBN: 9780521188005
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
Quantum field theory is the application of quantum mechanics to systems with infinitely many degrees of freedom. This 2007 textbook presents quantum field theoretical applications to systems out of equilibrium. It introduces the real-time approach to non-equilibrium statistical mechanics and the quantum field theory of non-equilibrium states in general. It offers two ways of learning how to study non-equilibrium states of many-body systems: the mathematical canonical way and an easy intuitive way using Feynman diagrams. The latter provides an easy introduction to the powerful functional methods of field theory, and the use of Feynman diagrams to study classical stochastic dynamics is considered in detail. The developed real-time technique is applied to study numerous phenomena in many-body systems. Complete with numerous exercises to aid self-study, this textbook is suitable for graduate students in statistical mechanics and condensed matter physics.

Functional Integrals and Collective Excitations

Functional Integrals and Collective Excitations PDF Author: Victor Nikolaevich Popov
Publisher: Cambridge University Press
ISBN: 9780521407878
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
This book describes the theory and selected applications of one of the most important mathematical tools used in the theoretical investigation of collective excitations in statistical physics, such as occur in superfluidity, superconductivity, plasma dynamics, superradiation, and in phase transitions.

Quantum Theory of Many-variable Systems and Fields

Quantum Theory of Many-variable Systems and Fields PDF Author: B. Sakita
Publisher: World Scientific Publishing Company
ISBN: 9789971978556
Category : Mathematics
Languages : en
Pages : 234

Get Book Here

Book Description
These lecture notes are based on special courses on Field Theory and Statistical Mechanics given for graduate students at the City College of New York. It is an ideal text for a one-semester course on Quantum Field Theory.