Cohomology of the Bianchi Groups

Cohomology of the Bianchi Groups PDF Author: Ethan Berkove
Publisher:
ISBN:
Category : Bianchi groups
Languages : en
Pages : 200

Get Book Here

Book Description

Cohomology of the Bianchi Groups

Cohomology of the Bianchi Groups PDF Author: Ethan Berkove
Publisher:
ISBN:
Category : Bianchi groups
Languages : en
Pages : 200

Get Book Here

Book Description


Cohomology of Arithmetic Groups

Cohomology of Arithmetic Groups PDF Author: James W. Cogdell
Publisher: Springer
ISBN: 3319955497
Category : Mathematics
Languages : en
Pages : 310

Get Book Here

Book Description
This book discusses the mathematical interests of Joachim Schwermer, who throughout his career has focused on the cohomology of arithmetic groups, automorphic forms and the geometry of arithmetic manifolds. To mark his 66th birthday, the editors brought together mathematical experts to offer an overview of the current state of research in these and related areas. The result is this book, with contributions ranging from topology to arithmetic. It probes the relation between cohomology of arithmetic groups and automorphic forms and their L-functions, and spans the range from classical Bianchi groups to the theory of Shimura varieties. It is a valuable reference for both experts in the fields and for graduate students and postdocs wanting to discover where the current frontiers lie.

Computations with Modular Forms

Computations with Modular Forms PDF Author: Gebhard Böckle
Publisher: Springer Science & Business Media
ISBN: 3319038478
Category : Mathematics
Languages : en
Pages : 377

Get Book Here

Book Description
This volume contains original research articles, survey articles and lecture notes related to the Computations with Modular Forms 2011 Summer School and Conference, held at the University of Heidelberg. A key theme of the Conference and Summer School was the interplay between theory, algorithms and experiment. The 14 papers offer readers both, instructional courses on the latest algorithms for computing modular and automorphic forms, as well as original research articles reporting on the latest developments in the field. The three Summer School lectures provide an introduction to modern algorithms together with some theoretical background for computations of and with modular forms, including computing cohomology of arithmetic groups, algebraic automorphic forms, and overconvergent modular symbols. The 11 Conference papers cover a wide range of themes related to computations with modular forms, including lattice methods for algebraic modular forms on classical groups, a generalization of the Maeda conjecture, an efficient algorithm for special values of p-adic Rankin triple product L-functions, arithmetic aspects and experimental data of Bianchi groups, a theoretical study of the real Jacobian of modular curves, results on computing weight one modular forms, and more.

Discrete Subgroups of Semisimple Lie Groups

Discrete Subgroups of Semisimple Lie Groups PDF Author: Gregori A. Margulis
Publisher: Springer Science & Business Media
ISBN: 9783540121794
Category : Mathematics
Languages : en
Pages : 408

Get Book Here

Book Description
Discrete subgroups have played a central role throughout the development of numerous mathematical disciplines. Discontinuous group actions and the study of fundamental regions are of utmost importance to modern geometry. Flows and dynamical systems on homogeneous spaces have found a wide range of applications, and of course number theory without discrete groups is unthinkable. This book, written by a master of the subject, is primarily devoted to discrete subgroups of finite covolume in semi-simple Lie groups. Since the notion of "Lie group" is sufficiently general, the author not only proves results in the classical geometry setting, but also obtains theorems of an algebraic nature, e.g. classification results on abstract homomorphisms of semi-simple algebraic groups over global fields. The treatise of course contains a presentation of the author's fundamental rigidity and arithmeticity theorems. The work in this monograph requires the language and basic results from fields such as algebraic groups, ergodic theory, the theory of unitary representatons, and the theory of amenable groups. The author develops the necessary material from these subjects; so that, while the book is of obvious importance for researchers working in related areas, it is essentially self-contained and therefore is also of great interest for advanced students.

Arithmetic and Geometry

Arithmetic and Geometry PDF Author: Luis Dieulefait
Publisher: Cambridge University Press
ISBN: 1316381447
Category : Mathematics
Languages : en
Pages : 539

Get Book Here

Book Description
The 'Arithmetic and Geometry' trimester, held at the Hausdorff Research Institute for Mathematics in Bonn, focussed on recent work on Serre's conjecture and on rational points on algebraic varieties. The resulting proceedings volume provides a modern overview of the subject for graduate students in arithmetic geometry and Diophantine geometry. It is also essential reading for any researcher wishing to keep abreast of the latest developments in the field. Highlights include Tim Browning's survey on applications of the circle method to rational points on algebraic varieties and Per Salberger's chapter on rational points on cubic hypersurfaces.

Automorphic Forms and $L$-functions I

Automorphic Forms and $L$-functions I PDF Author: David Ginzburg
Publisher: American Mathematical Soc.
ISBN: 0821847066
Category : Mathematics
Languages : en
Pages : 315

Get Book Here

Book Description
Includes articles that represent global aspects of automorphic forms. This book covers topics such as: the trace formula; functoriality; representations of reductive groups over local fields; the relative trace formula and periods of automorphic forms; Rankin - Selberg convolutions and L-functions; and, p-adic L-functions.

Groups Acting on Hyperbolic Space

Groups Acting on Hyperbolic Space PDF Author: Juergen Elstrodt
Publisher: Springer Science & Business Media
ISBN: 3662036266
Category : Mathematics
Languages : en
Pages : 530

Get Book Here

Book Description
This book is concerned with discontinuous groups of motions of the unique connected and simply connected Riemannian 3-manifold of constant curva ture -1, which is traditionally called hyperbolic 3-space. This space is the 3-dimensional instance of an analogous Riemannian manifold which exists uniquely in every dimension n :::: 2. The hyperbolic spaces appeared first in the work of Lobachevski in the first half of the 19th century. Very early in the last century the group of isometries of these spaces was studied by Steiner, when he looked at the group generated by the inversions in spheres. The ge ometries underlying the hyperbolic spaces were of fundamental importance since Lobachevski, Bolyai and Gauß had observed that they do not satisfy the axiom of parallels. Already in the classical works several concrete coordinate models of hy perbolic 3-space have appeared. They make explicit computations possible and also give identifications of the full group of motions or isometries with well-known matrix groups. One such model, due to H. Poincare, is the upper 3 half-space IH in JR . The group of isometries is then identified with an exten sion of index 2 of the group PSL(2,

Algorithmic Number Theory

Algorithmic Number Theory PDF Author: Guillaume Hanrot
Publisher: Springer
ISBN: 3642145183
Category : Computers
Languages : en
Pages : 407

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 9th International Algorithmic Number Theory Symposium, ANTS 2010, held in Nancy, France, in July 2010. The 25 revised full papers presented together with 5 invited papers were carefully reviewed and selected for inclusion in the book. The papers are devoted to algorithmic aspects of number theory, including elementary number theory, algebraic number theory, analytic number theory, geometry of numbers, algebraic geometry, finite fields, and cryptography.

Algebraic Topology

Algebraic Topology PDF Author: Allen Hatcher
Publisher: Cambridge University Press
ISBN: 9780521795401
Category : Mathematics
Languages : en
Pages : 572

Get Book Here

Book Description
An introductory textbook suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises.

Orbifolds and Stringy Topology

Orbifolds and Stringy Topology PDF Author: Alejandro Adem
Publisher: Cambridge University Press
ISBN: 1139464485
Category : Mathematics
Languages : en
Pages : 138

Get Book Here

Book Description
An introduction to the theory of orbifolds from a modern perspective, combining techniques from geometry, algebraic topology and algebraic geometry. One of the main motivations, and a major source of examples, is string theory, where orbifolds play an important role. The subject is first developed following the classical description analogous to manifold theory, after which the book branches out to include the useful description of orbifolds provided by groupoids, as well as many examples in the context of algebraic geometry. Classical invariants such as de Rham cohomology and bundle theory are developed, a careful study of orbifold morphisms is provided, and the topic of orbifold K-theory is covered. The heart of this book, however, is a detailed description of the Chen-Ruan cohomology, which introduces a product for orbifolds and has had significant impact. The final chapter includes explicit computations for a number of interesting examples.