Cohomology of Arithmetic Groups and Automorphic Forms

Cohomology of Arithmetic Groups and Automorphic Forms PDF Author: Jean-Pierre Labesse
Publisher: Springer
ISBN: 3540468765
Category : Mathematics
Languages : en
Pages : 358

Get Book Here

Book Description
Cohomology of arithmetic groups serves as a tool in studying possible relations between the theory of automorphic forms and the arithmetic of algebraic varieties resp. the geometry of locally symmetric spaces. These proceedings will serve as a guide to this still rapidly developing area of mathematics. Besides two survey articles, the contributions are original research papers.

Cohomology of Arithmetic Groups and Automorphic Forms

Cohomology of Arithmetic Groups and Automorphic Forms PDF Author: Jean-Pierre Labesse
Publisher: Springer
ISBN: 3540468765
Category : Mathematics
Languages : en
Pages : 358

Get Book Here

Book Description
Cohomology of arithmetic groups serves as a tool in studying possible relations between the theory of automorphic forms and the arithmetic of algebraic varieties resp. the geometry of locally symmetric spaces. These proceedings will serve as a guide to this still rapidly developing area of mathematics. Besides two survey articles, the contributions are original research papers.

Cohomology of Arithmetic Groups

Cohomology of Arithmetic Groups PDF Author: James W. Cogdell
Publisher: Springer
ISBN: 3319955497
Category : Mathematics
Languages : en
Pages : 310

Get Book Here

Book Description
This book discusses the mathematical interests of Joachim Schwermer, who throughout his career has focused on the cohomology of arithmetic groups, automorphic forms and the geometry of arithmetic manifolds. To mark his 66th birthday, the editors brought together mathematical experts to offer an overview of the current state of research in these and related areas. The result is this book, with contributions ranging from topology to arithmetic. It probes the relation between cohomology of arithmetic groups and automorphic forms and their L-functions, and spans the range from classical Bianchi groups to the theory of Shimura varieties. It is a valuable reference for both experts in the fields and for graduate students and postdocs wanting to discover where the current frontiers lie.

Automorphic Forms and $L$-functions I

Automorphic Forms and $L$-functions I PDF Author: David Ginzburg
Publisher: American Mathematical Soc.
ISBN: 0821847066
Category : Mathematics
Languages : en
Pages : 315

Get Book Here

Book Description
Includes articles that represent global aspects of automorphic forms. This book covers topics such as: the trace formula; functoriality; representations of reductive groups over local fields; the relative trace formula and periods of automorphic forms; Rankin - Selberg convolutions and L-functions; and, p-adic L-functions.

Eisenstein Cohomology for GLN and the Special Values of Rankin–Selberg L-Functions

Eisenstein Cohomology for GLN and the Special Values of Rankin–Selberg L-Functions PDF Author: Günter Harder
Publisher: Princeton University Press
ISBN: 069119789X
Category : Mathematics
Languages : en
Pages : 234

Get Book Here

Book Description
Introduction -- The cohomology of GLn -- Analytic tools -- Boundary cohomology -- The strongly inner spectrum and applications -- Eisenstein cohomology -- L-functions -- Harish-Chandra modules over Z / by Günter Harder -- Archimedean intertwining operator / by Uwe Weselmann.

Automorphic Forms on GL (3,TR)

Automorphic Forms on GL (3,TR) PDF Author: D. Bump
Publisher: Springer
ISBN: 3540390553
Category : Mathematics
Languages : en
Pages : 196

Get Book Here

Book Description


Holomorphic Automorphic Forms and Cohomology

Holomorphic Automorphic Forms and Cohomology PDF Author: Roelof Bruggeman
Publisher: American Mathematical Soc.
ISBN: 1470428555
Category : Mathematics
Languages : en
Pages : 182

Get Book Here

Book Description


Automorphic Forms and L-Functions for the Group GL(n,R)

Automorphic Forms and L-Functions for the Group GL(n,R) PDF Author: Dorian Goldfeld
Publisher: Cambridge University Press
ISBN: 1139456202
Category : Mathematics
Languages : en
Pages : 65

Get Book Here

Book Description
L-functions associated to automorphic forms encode all classical number theoretic information. They are akin to elementary particles in physics. This book provides an entirely self-contained introduction to the theory of L-functions in a style accessible to graduate students with a basic knowledge of classical analysis, complex variable theory, and algebra. Also within the volume are many new results not yet found in the literature. The exposition provides complete detailed proofs of results in an easy-to-read format using many examples and without the need to know and remember many complex definitions. The main themes of the book are first worked out for GL(2,R) and GL(3,R), and then for the general case of GL(n,R). In an appendix to the book, a set of Mathematica functions is presented, designed to allow the reader to explore the theory from a computational point of view.

Arithmetic Groups and Their Generalizations

Arithmetic Groups and Their Generalizations PDF Author: Lizhen Ji
Publisher: American Mathematical Soc.
ISBN: 0821848666
Category : Mathematics
Languages : en
Pages : 282

Get Book Here

Book Description
In one guise or another, many mathematicians are familiar with certain arithmetic groups, such as $\mathbf{Z}$ or $\textrm{SL}(n, \mathbf{Z})$. Yet, many applications of arithmetic groups and many connections to other subjects within mathematics are less well known. Indeed, arithmetic groups admit many natural and important generalizations. The purpose of this expository book is to explain, through some brief and informal comments and extensive references, what arithmetic groups and their generalizations are, why they are important to study, and how they can be understood and applied to many fields, such as analysis, geometry, topology, number theory, representation theory, and algebraic geometry. It is hoped that such an overview will shed a light on the important role played by arithmetic groups in modern mathematics. Titles in this series are co-published with International Press, Cambridge, MA.Table of Contents: Introduction; General comments on references; Examples of basic arithmetic groups; General arithmetic subgroups and locally symmetric spaces; Discrete subgroups of Lie groups and arithmeticity of lattices in Lie groups; Different completions of $\mathbb{Q}$ and $S$-arithmetic groups over number fields; Global fields and $S$-arithmetic groups over function fields; Finiteness properties of arithmetic and $S$-arithmetic groups; Symmetric spaces, Bruhat-Tits buildings and their arithmetic quotients; Compactifications of locally symmetric spaces; Rigidity of locally symmetric spaces; Automorphic forms and automorphic representations for general arithmetic groups; Cohomology of arithmetic groups; $K$-groups of rings of integers and $K$-groups of group rings; Locally homogeneous manifolds and period domains; Non-cofinite discrete groups, geometrically finite groups; Large scale geometry of discrete groups; Tree lattices; Hyperbolic groups; Mapping class groups and outer automorphism groups of free groups; Outer automorphism group of free groups and the outer spaces; References; Index. Review from Mathematical Reviews: ...the author deserves credit for having done the tremendous job of encompassing every aspect of arithmetic groups visible in today's mathematics in a systematic manner; the book should be an important guide for some time to come.(AMSIP/43.

Proceedings of the International Conference on Cohomology of Arithmetic Groups, L-Functions, and Automorphic Forms

Proceedings of the International Conference on Cohomology of Arithmetic Groups, L-Functions, and Automorphic Forms PDF Author: T. N. Venkataramana
Publisher: Alpha Science International, Limited
ISBN:
Category : Mathematics
Languages : en
Pages : 270

Get Book Here

Book Description
This collection of papers is based on lectures delivered at the Tata Institute of Fundamental Research (TIFR) as part of a special year on arithmetic groups, $L$-functions and automorphic forms. The volume opens with an article by Cogdell and Piatetski-Shapiro on Converse Theorems for $GL_n$ and applications to liftings. It ends with some remarks on the Riemann Hypothesis by Ram Murty. Other talks cover topics such as Hecke theory for Jacobi forms, restriction maps and $L$-values, congruences for Hilbert modular forms, Whittaker models for $p$-adic $GL(4)$, the Seigel formula, newforms for the Maass Spezialchar, an algebraic Chebotarev density theorem, a converse theorem for Dirichlet series with poles, Kirillov theory for $GL_2(\mathcal{D})$, and the $L^2$ Euler characteristic of arithmetic quotients. The present volume is the latest in the Tata Institute's tradition of recognized contributions to number theory.

Modular Forms and Galois Cohomology

Modular Forms and Galois Cohomology PDF Author: Haruzo Hida
Publisher: Cambridge University Press
ISBN: 9780521770361
Category : Mathematics
Languages : en
Pages : 358

Get Book Here

Book Description
Comprehensive account of recent developments in arithmetic theory of modular forms, for graduates and researchers.