Cohomology and Differential Forms

Cohomology and Differential Forms PDF Author: Izu Vaisman
Publisher: Courier Dover Publications
ISBN: 0486804836
Category : Mathematics
Languages : en
Pages : 305

Get Book Here

Book Description
This monograph explores the cohomological theory of manifolds with various sheaves and its application to differential geometry. Based on lectures given by author Izu Vaisman at Romania's University of Iasi, the treatment is suitable for advanced undergraduates and graduate students of mathematics as well as mathematical researchers in differential geometry, global analysis, and topology. A self-contained development of cohomological theory constitutes the central part of the book. Topics include categories and functors, the Čech cohomology with coefficients in sheaves, the theory of fiber bundles, and differentiable, foliated, and complex analytic manifolds. The final chapter covers the theorems of de Rham and Dolbeault-Serre and examines the theorem of Allendoerfer and Eells, with applications of these theorems to characteristic classes and the general theory of harmonic forms.

Cohomology and Differential Forms

Cohomology and Differential Forms PDF Author: Izu Vaisman
Publisher:
ISBN: 9780835760638
Category : Differential forms
Languages : en
Pages : 284

Get Book Here

Book Description


De Rham Cohomology of Differential Modules on Algebraic Varieties

De Rham Cohomology of Differential Modules on Algebraic Varieties PDF Author: Yves André
Publisher: Birkhäuser
ISBN: 3034883366
Category : Mathematics
Languages : en
Pages : 223

Get Book Here

Book Description
"...A nice feature of the book [is] that at various points the authors provide examples, or rather counterexamples, that clearly show what can go wrong...This is a nicely-written book [that] studies algebraic differential modules in several variables." --Mathematical Reviews

From Calculus to Cohomology

From Calculus to Cohomology PDF Author: Ib H. Madsen
Publisher: Cambridge University Press
ISBN: 9780521589567
Category : Mathematics
Languages : en
Pages : 302

Get Book Here

Book Description
An introductory textbook on cohomology and curvature with emphasis on applications.

Differential Forms in Algebraic Topology

Differential Forms in Algebraic Topology PDF Author: Raoul Bott
Publisher: Springer Science & Business Media
ISBN: 1475739516
Category : Mathematics
Languages : en
Pages : 319

Get Book Here

Book Description
Developed from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology.

Introductory Lectures on Equivariant Cohomology

Introductory Lectures on Equivariant Cohomology PDF Author: Loring W. Tu
Publisher: Princeton University Press
ISBN: 0691191751
Category : Mathematics
Languages : en
Pages : 337

Get Book Here

Book Description
This book gives a clear introductory account of equivariant cohomology, a central topic in algebraic topology. Equivariant cohomology is concerned with the algebraic topology of spaces with a group action, or in other words, with symmetries of spaces. First defined in the 1950s, it has been introduced into K-theory and algebraic geometry, but it is in algebraic topology that the concepts are the most transparent and the proofs are the simplest. One of the most useful applications of equivariant cohomology is the equivariant localization theorem of Atiyah-Bott and Berline-Vergne, which converts the integral of an equivariant differential form into a finite sum over the fixed point set of the group action, providing a powerful tool for computing integrals over a manifold. Because integrals and symmetries are ubiquitous, equivariant cohomology has found applications in diverse areas of mathematics and physics. Assuming readers have taken one semester of manifold theory and a year of algebraic topology, Loring Tu begins with the topological construction of equivariant cohomology, then develops the theory for smooth manifolds with the aid of differential forms. To keep the exposition simple, the equivariant localization theorem is proven only for a circle action. An appendix gives a proof of the equivariant de Rham theorem, demonstrating that equivariant cohomology can be computed using equivariant differential forms. Examples and calculations illustrate new concepts. Exercises include hints or solutions, making this book suitable for self-study.

Differential Forms on Singular Varieties

Differential Forms on Singular Varieties PDF Author: Vincenzo Ancona
Publisher: CRC Press
ISBN: 1420026526
Category : Mathematics
Languages : en
Pages : 333

Get Book Here

Book Description
Differential Forms on Singular Varieties: De Rham and Hodge Theory Simplified uses complexes of differential forms to give a complete treatment of the Deligne theory of mixed Hodge structures on the cohomology of singular spaces. This book features an approach that employs recursive arguments on dimension and does not introduce spaces of hig

Introduction to Geometry and Topology

Introduction to Geometry and Topology PDF Author: Werner Ballmann
Publisher: Birkhäuser
ISBN: 3034809832
Category : Mathematics
Languages : en
Pages : 174

Get Book Here

Book Description
This book provides an introduction to topology, differential topology, and differential geometry. It is based on manuscripts refined through use in a variety of lecture courses. The first chapter covers elementary results and concepts from point-set topology. An exception is the Jordan Curve Theorem, which is proved for polygonal paths and is intended to give students a first glimpse into the nature of deeper topological problems. The second chapter of the book introduces manifolds and Lie groups, and examines a wide assortment of examples. Further discussion explores tangent bundles, vector bundles, differentials, vector fields, and Lie brackets of vector fields. This discussion is deepened and expanded in the third chapter, which introduces the de Rham cohomology and the oriented integral and gives proofs of the Brouwer Fixed-Point Theorem, the Jordan-Brouwer Separation Theorem, and Stokes's integral formula. The fourth and final chapter is devoted to the fundamentals of differential geometry and traces the development of ideas from curves to submanifolds of Euclidean spaces. Along the way, the book discusses connections and curvature--the central concepts of differential geometry. The discussion culminates with the Gauß equations and the version of Gauß's theorema egregium for submanifolds of arbitrary dimension and codimension. This book is primarily aimed at advanced undergraduates in mathematics and physics and is intended as the template for a one- or two-semester bachelor's course.

Differential Geometry

Differential Geometry PDF Author: Loring W. Tu
Publisher: Springer
ISBN: 3319550845
Category : Mathematics
Languages : en
Pages : 358

Get Book Here

Book Description
This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.

Rational Homotopy Theory and Differential Forms

Rational Homotopy Theory and Differential Forms PDF Author: Phillip Griffiths
Publisher: Springer Science & Business Media
ISBN: 1461484685
Category : Mathematics
Languages : en
Pages : 228

Get Book Here

Book Description
This completely revised and corrected version of the well-known Florence notes circulated by the authors together with E. Friedlander examines basic topology, emphasizing homotopy theory. Included is a discussion of Postnikov towers and rational homotopy theory. This is then followed by an in-depth look at differential forms and de Tham’s theorem on simplicial complexes. In addition, Sullivan’s results on computing the rational homotopy type from forms is presented. New to the Second Edition: *Fully-revised appendices including an expanded discussion of the Hirsch lemma *Presentation of a natural proof of a Serre spectral sequence result *Updated content throughout the book, reflecting advances in the area of homotopy theory With its modern approach and timely revisions, this second edition of Rational Homotopy Theory and Differential Forms will be a valuable resource for graduate students and researchers in algebraic topology, differential forms, and homotopy theory.