Author: Torsten Meier
Publisher: Springer Science & Business Media
ISBN: 3540325557
Category : Science
Languages : en
Pages : 322
Book Description
This book introduces the basic theoretical concepts required for the analysis of the optical response of semiconductor systems in the coherent regime. It is the most instructive textbook on the theory and optical effects of semiconductors. The entire presentation is based on a one-dimensional tight-binding model. Starting with discrete-level systems, increasing complexity is added gradually to the model by including band-structure and many-particle interaction. Various linear and nonlinear optical spectra and temporal phenomena are studied. The analysis of many-body effects in nonlinear optical phenomena covers a major part of the book.
Coherent Semiconductor Optics
Author: Torsten Meier
Publisher: Springer Science & Business Media
ISBN: 3540325557
Category : Science
Languages : en
Pages : 322
Book Description
This book introduces the basic theoretical concepts required for the analysis of the optical response of semiconductor systems in the coherent regime. It is the most instructive textbook on the theory and optical effects of semiconductors. The entire presentation is based on a one-dimensional tight-binding model. Starting with discrete-level systems, increasing complexity is added gradually to the model by including band-structure and many-particle interaction. Various linear and nonlinear optical spectra and temporal phenomena are studied. The analysis of many-body effects in nonlinear optical phenomena covers a major part of the book.
Publisher: Springer Science & Business Media
ISBN: 3540325557
Category : Science
Languages : en
Pages : 322
Book Description
This book introduces the basic theoretical concepts required for the analysis of the optical response of semiconductor systems in the coherent regime. It is the most instructive textbook on the theory and optical effects of semiconductors. The entire presentation is based on a one-dimensional tight-binding model. Starting with discrete-level systems, increasing complexity is added gradually to the model by including band-structure and many-particle interaction. Various linear and nonlinear optical spectra and temporal phenomena are studied. The analysis of many-body effects in nonlinear optical phenomena covers a major part of the book.
Semiconductor Quantum Optics
Author: Mackillo Kira
Publisher: Cambridge University Press
ISBN: 1139502514
Category : Science
Languages : en
Pages : 658
Book Description
The emerging field of semiconductor quantum optics combines semiconductor physics and quantum optics, with the aim of developing quantum devices with unprecedented performance. In this book researchers and graduate students alike will reach a new level of understanding to begin conducting state-of-the-art investigations. The book combines theoretical methods from quantum optics and solid-state physics to give a consistent microscopic description of light-matter- and many-body-interaction effects in low-dimensional semiconductor nanostructures. It develops the systematic theory needed to treat semiconductor quantum-optical effects, such as strong light-matter coupling, light-matter entanglement, squeezing, as well as quantum-optical semiconductor spectroscopy. Detailed derivations of key equations help readers learn the techniques and nearly 300 exercises help test their understanding of the materials covered. The book is accompanied by a website hosted by the authors, containing further discussions on topical issues, latest trends and publications on the field. The link can be found at www.cambridge.org/9780521875097.
Publisher: Cambridge University Press
ISBN: 1139502514
Category : Science
Languages : en
Pages : 658
Book Description
The emerging field of semiconductor quantum optics combines semiconductor physics and quantum optics, with the aim of developing quantum devices with unprecedented performance. In this book researchers and graduate students alike will reach a new level of understanding to begin conducting state-of-the-art investigations. The book combines theoretical methods from quantum optics and solid-state physics to give a consistent microscopic description of light-matter- and many-body-interaction effects in low-dimensional semiconductor nanostructures. It develops the systematic theory needed to treat semiconductor quantum-optical effects, such as strong light-matter coupling, light-matter entanglement, squeezing, as well as quantum-optical semiconductor spectroscopy. Detailed derivations of key equations help readers learn the techniques and nearly 300 exercises help test their understanding of the materials covered. The book is accompanied by a website hosted by the authors, containing further discussions on topical issues, latest trends and publications on the field. The link can be found at www.cambridge.org/9780521875097.
Semiconductor Optics and Transport Phenomena
Author: Wilfried Schäfer
Publisher: Springer Science & Business Media
ISBN: 3662046636
Category : Science
Languages : en
Pages : 498
Book Description
Well-balanced and up-to-date introduction to the field of semiconductor optics, including transport phenomena in semiconductors. Starting with the theoretical fundamentals of this field the book develops, assuming a basic knowledge of solid-state physics. The application areas of the theory covered include semiconductor lasers, detectors, electro-optic modulators, single-electron transistors, microcavities and double-barrier resonant tunneling diodes. One hundred problems with hints for solution help the readers to deepen their knowledge.
Publisher: Springer Science & Business Media
ISBN: 3662046636
Category : Science
Languages : en
Pages : 498
Book Description
Well-balanced and up-to-date introduction to the field of semiconductor optics, including transport phenomena in semiconductors. Starting with the theoretical fundamentals of this field the book develops, assuming a basic knowledge of solid-state physics. The application areas of the theory covered include semiconductor lasers, detectors, electro-optic modulators, single-electron transistors, microcavities and double-barrier resonant tunneling diodes. One hundred problems with hints for solution help the readers to deepen their knowledge.
Quantum Coherence Correlation and Decoherence in Semiconductor Nanostructures
Author: Toshihide Takagahara
Publisher: Academic Press
ISBN: 0080525121
Category : Technology & Engineering
Languages : en
Pages : 508
Book Description
Semiconductor nanostructures are attracting a great deal of interest as the most promising device with which to implement quantum information processing and quantum computing. This book surveys the present status of nanofabrication techniques, near field spectroscopy and microscopy to assist the fabricated nanostructures. It will be essential reading for academic and industrial researchers in pure and applied physics, optics, semiconductors and microelectronics. - The first up-to-date review articles on various aspects on quantum coherence, correlation and decoherence in semiconductor nanostructures
Publisher: Academic Press
ISBN: 0080525121
Category : Technology & Engineering
Languages : en
Pages : 508
Book Description
Semiconductor nanostructures are attracting a great deal of interest as the most promising device with which to implement quantum information processing and quantum computing. This book surveys the present status of nanofabrication techniques, near field spectroscopy and microscopy to assist the fabricated nanostructures. It will be essential reading for academic and industrial researchers in pure and applied physics, optics, semiconductors and microelectronics. - The first up-to-date review articles on various aspects on quantum coherence, correlation and decoherence in semiconductor nanostructures
Bose-Einstein Condensation of Excitons and Biexcitons
Author: Svi︠a︡toslav Anatolʹevich Moskalenko
Publisher: Cambridge University Press
ISBN: 9780521580991
Category : Science
Languages : en
Pages : 434
Book Description
Bose-Einstein condensation of excitons is a unique effect in which the electronic states of a solid can self-organize to acquire quantum phase coherence. The phenomenon is closely linked to Bose-Einstein condensation in other systems such as liquid helium and laser-cooled atomic gases. This is the first book to provide a comprehensive survey of this field, covering theoretical aspects as well as recent experimental work. After setting out the relevant basic physics of excitons, the authors discuss exciton-phonon interactions as well as the behaviour of biexcitons. They cover exciton phase transitions and give particular attention to nonlinear optical effects including the optical Stark effect and chaos in excitonic systems. The thermodynamics of equilibrium, quasi-equilibrium, and nonequilibrium systems are examined in detail. The authors interweave theoretical and experimental results throughout the book, and it will be of great interest to graduate students and researchers in semiconductor and superconductor physics, quantum optics, and atomic physics.
Publisher: Cambridge University Press
ISBN: 9780521580991
Category : Science
Languages : en
Pages : 434
Book Description
Bose-Einstein condensation of excitons is a unique effect in which the electronic states of a solid can self-organize to acquire quantum phase coherence. The phenomenon is closely linked to Bose-Einstein condensation in other systems such as liquid helium and laser-cooled atomic gases. This is the first book to provide a comprehensive survey of this field, covering theoretical aspects as well as recent experimental work. After setting out the relevant basic physics of excitons, the authors discuss exciton-phonon interactions as well as the behaviour of biexcitons. They cover exciton phase transitions and give particular attention to nonlinear optical effects including the optical Stark effect and chaos in excitonic systems. The thermodynamics of equilibrium, quasi-equilibrium, and nonequilibrium systems are examined in detail. The authors interweave theoretical and experimental results throughout the book, and it will be of great interest to graduate students and researchers in semiconductor and superconductor physics, quantum optics, and atomic physics.
Semiconductor Optics 1
Author: Heinz Kalt
Publisher: Springer Nature
ISBN: 3030241521
Category : Science
Languages : en
Pages : 559
Book Description
This revised and updated edition of the well-received book by C. Klingshirn provides an introduction to and an overview of all aspects of semiconductor optics, from IR to visible and UV. It has been split into two volumes and rearranged to offer a clearer structure of the course content. Inserts on important experimental techniques as well as sections on topical research have been added to support research-oriented teaching and learning. Volume 1 provides an introduction to the linear optical properties of semiconductors. The mathematical treatment has been kept as elementary as possible to allow an intuitive approach to the understanding of results of semiconductor spectroscopy. Building on the phenomenological model of the Lorentz oscillator, the book describes the interaction of light with fundamental optical excitations in semiconductors (phonons, free carriers, excitons). It also offers a broad review of seminal research results augmented by concise descriptions of the relevant experimental techniques, e.g., Fourier transform IR spectroscopy, ellipsometry, modulation spectroscopy and spatially resolved methods, to name a few. Further, it picks up on hot topics in current research, like quantum structures, mono-layer semiconductors or Perovskites. The experimental aspects of semiconductor optics are complemented by an in-depth discussion of group theory in solid-state optics. Covering subjects ranging from physics to materials science and optoelectronics, this book provides a lively and comprehensive introduction to semiconductor optics. With over 120 problems, more than 480 figures, abstracts to each chapter, as well as boxed inserts and a detailed index, it is intended for use in graduate courses in physics and neighboring sciences like material science and electrical engineering. It is also a valuable reference resource for doctoral and advanced researchers.
Publisher: Springer Nature
ISBN: 3030241521
Category : Science
Languages : en
Pages : 559
Book Description
This revised and updated edition of the well-received book by C. Klingshirn provides an introduction to and an overview of all aspects of semiconductor optics, from IR to visible and UV. It has been split into two volumes and rearranged to offer a clearer structure of the course content. Inserts on important experimental techniques as well as sections on topical research have been added to support research-oriented teaching and learning. Volume 1 provides an introduction to the linear optical properties of semiconductors. The mathematical treatment has been kept as elementary as possible to allow an intuitive approach to the understanding of results of semiconductor spectroscopy. Building on the phenomenological model of the Lorentz oscillator, the book describes the interaction of light with fundamental optical excitations in semiconductors (phonons, free carriers, excitons). It also offers a broad review of seminal research results augmented by concise descriptions of the relevant experimental techniques, e.g., Fourier transform IR spectroscopy, ellipsometry, modulation spectroscopy and spatially resolved methods, to name a few. Further, it picks up on hot topics in current research, like quantum structures, mono-layer semiconductors or Perovskites. The experimental aspects of semiconductor optics are complemented by an in-depth discussion of group theory in solid-state optics. Covering subjects ranging from physics to materials science and optoelectronics, this book provides a lively and comprehensive introduction to semiconductor optics. With over 120 problems, more than 480 figures, abstracts to each chapter, as well as boxed inserts and a detailed index, it is intended for use in graduate courses in physics and neighboring sciences like material science and electrical engineering. It is also a valuable reference resource for doctoral and advanced researchers.
Optical Characterization of Semiconductors
Author: Sidney Perkowitz
Publisher: Elsevier
ISBN: 0080984274
Category : Technology & Engineering
Languages : en
Pages : 229
Book Description
This is the first book to explain, illustrate, and compare the most widely used methods in optics: photoluminescence, infrared spectroscopy, and Raman scattering. Written with non-experts in mind, the book develops the background needed to understand the why and how of each technique, but does not require special knowledge of semiconductors or optics. Each method is illustrated with numerous case studies. Practical information drawn from the authors experience is given to help establish optical facilities, including commercial sources for equipment, and experimental details. For industrial scientists with specific problems in semiconducting materials; for academic scientists who wish to apply their spectroscopic methods to characterization problems; and for students in solid state physics, materials science and engineering, and semiconductor electronics and photonics, this book provides a unique overview, bringing together these valuable techniques in a coherent wayfor the first time.Discusses and compares infrared, Raman, and photoluminescence methodsEnables readers to choose the best method for a given problemIllustrates applications to help non-experts and industrial users, with answers to selected common problemsPresents fundamentals with examples from the semiconductor literature without excessive abstract discussionFeatures equipment lists and discussion of techniques to help establish characterization laboratories
Publisher: Elsevier
ISBN: 0080984274
Category : Technology & Engineering
Languages : en
Pages : 229
Book Description
This is the first book to explain, illustrate, and compare the most widely used methods in optics: photoluminescence, infrared spectroscopy, and Raman scattering. Written with non-experts in mind, the book develops the background needed to understand the why and how of each technique, but does not require special knowledge of semiconductors or optics. Each method is illustrated with numerous case studies. Practical information drawn from the authors experience is given to help establish optical facilities, including commercial sources for equipment, and experimental details. For industrial scientists with specific problems in semiconducting materials; for academic scientists who wish to apply their spectroscopic methods to characterization problems; and for students in solid state physics, materials science and engineering, and semiconductor electronics and photonics, this book provides a unique overview, bringing together these valuable techniques in a coherent wayfor the first time.Discusses and compares infrared, Raman, and photoluminescence methodsEnables readers to choose the best method for a given problemIllustrates applications to help non-experts and industrial users, with answers to selected common problemsPresents fundamentals with examples from the semiconductor literature without excessive abstract discussionFeatures equipment lists and discussion of techniques to help establish characterization laboratories
Optical Coherence and Quantum Optics
Author: Leonard Mandel
Publisher: Cambridge University Press
ISBN: 9780521417112
Category : Science
Languages : en
Pages : 1200
Book Description
This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media.
Publisher: Cambridge University Press
ISBN: 9780521417112
Category : Science
Languages : en
Pages : 1200
Book Description
This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media.
Coherent Optical Fiber Communications
Author: T. Okoshi
Publisher: Springer Science & Business Media
ISBN: 9789027726773
Category : Technology & Engineering
Languages : en
Pages : 302
Book Description
Publisher: Springer Science & Business Media
ISBN: 9789027726773
Category : Technology & Engineering
Languages : en
Pages : 302
Book Description
Semiconductor Quantum Science and Technology
Author:
Publisher: Academic Press
ISBN: 0128237732
Category : Science
Languages : en
Pages : 482
Book Description
Semiconductor quantum science and technology is exploring the exciting and emerging prospects of integrating quantum functionality on semiconductor platforms to convert current information technology into quantum information technology. The past twenty years have led to incredible advances in this field. This book brings together the leading scientists who present the main achievements and challenges by reviewing and motivating the state-of-the-art at a tutorial level. The key challenges include creating quantum-light sources, quantum information processing via strong light-matter interaction, discovering new quantum materials as well as quasiparticles, and determining new quantum spectroscopic methodologies for superior control of quantum phenomena. As an important step, integration of these solutions on a semiconductor chip is discussed, and outlook for the future of semiconductor quantum science and technology is given.
Publisher: Academic Press
ISBN: 0128237732
Category : Science
Languages : en
Pages : 482
Book Description
Semiconductor quantum science and technology is exploring the exciting and emerging prospects of integrating quantum functionality on semiconductor platforms to convert current information technology into quantum information technology. The past twenty years have led to incredible advances in this field. This book brings together the leading scientists who present the main achievements and challenges by reviewing and motivating the state-of-the-art at a tutorial level. The key challenges include creating quantum-light sources, quantum information processing via strong light-matter interaction, discovering new quantum materials as well as quasiparticles, and determining new quantum spectroscopic methodologies for superior control of quantum phenomena. As an important step, integration of these solutions on a semiconductor chip is discussed, and outlook for the future of semiconductor quantum science and technology is given.