Climate-Smart Rice Breeding

Climate-Smart Rice Breeding PDF Author: Akansha Singh
Publisher: Springer
ISBN: 9789819770977
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
This book covers all aspects of smart-breeding technologies in creating novel crop architecture to meet future rice demand. Several advanced crop breeding technologies like, marker-assisted backcross breeding, marker-assisted recurrent selection, genomic assisted breeding, haplotype breeding and genome editing technologies have been introduced and employed for rice productivity improvement. Use of artificial intelligence and machine learning in crop phenotype prediction is paving the way for climate-smart breeding. Chapters in this volume cover all these relevant topics. The global rice demand is estimated to rise to 555 and 827.86 million tons in 2035 for milled rice and paddy, respectively. Enhancing high-nutrition rice production under the pressure of global climate change conditions is a hard task for breeders. Changing climatic scenarios and extreme weather conditions have increased the incidence of various biotic and abiotic stresses. Also, every degree rise in global mean temperature causes 3.2 % reduction in rice yield globally. This creates an urgent need for developing high-yielding rice varieties to tackle the aggravated issue of food security. This book is meant for scientists, professionals, researchers, and students working on enhancing rice production through advanced plant-breeding technologies.

Climate-Smart Rice Breeding

Climate-Smart Rice Breeding PDF Author: Akansha Singh
Publisher: Springer
ISBN: 9789819770977
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
This book covers all aspects of smart-breeding technologies in creating novel crop architecture to meet future rice demand. Several advanced crop breeding technologies like, marker-assisted backcross breeding, marker-assisted recurrent selection, genomic assisted breeding, haplotype breeding and genome editing technologies have been introduced and employed for rice productivity improvement. Use of artificial intelligence and machine learning in crop phenotype prediction is paving the way for climate-smart breeding. Chapters in this volume cover all these relevant topics. The global rice demand is estimated to rise to 555 and 827.86 million tons in 2035 for milled rice and paddy, respectively. Enhancing high-nutrition rice production under the pressure of global climate change conditions is a hard task for breeders. Changing climatic scenarios and extreme weather conditions have increased the incidence of various biotic and abiotic stresses. Also, every degree rise in global mean temperature causes 3.2 % reduction in rice yield globally. This creates an urgent need for developing high-yielding rice varieties to tackle the aggravated issue of food security. This book is meant for scientists, professionals, researchers, and students working on enhancing rice production through advanced plant-breeding technologies.

Climate-Smart Rice Breeding

Climate-Smart Rice Breeding PDF Author: Akansha Singh
Publisher: Springer Nature
ISBN: 981977098X
Category :
Languages : en
Pages : 375

Get Book Here

Book Description


Climate-Smart Food

Climate-Smart Food PDF Author: Dave Reay
Publisher: Springer
ISBN: 3030182061
Category : Nature
Languages : en
Pages : 200

Get Book Here

Book Description
This open access book asks just how climate-smart our food really is. It follows an average day's worth of food and drink to see where it comes from, how far it travels, and the carbon price we all pay for it. From our breakfast tea and toast, through breaktime chocolate bar, to take-away supper, Dave Reay explores the weather extremes the world’s farmers are already dealing with, and what new threats climate change will bring. Readers will encounter heat waves and hurricanes, wildfires and deadly toxins, as well as some truly climate-smart solutions. In every case there are responses that could cut emissions while boosting resilience and livelihoods. Ultimately we are all in this together, our decisions on what food we buy and how we consume it send life-changing ripples right through the global web that is our food supply. As we face a future of 10 billion mouths to feed in a rapidly changing climate, it’s time to get to know our farmers and herders, our vintners and fisherfolk, a whole lot better.

Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality

Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality PDF Author: Mohammad Anwar Hossain
Publisher: John Wiley & Sons
ISBN: 1119633117
Category : Science
Languages : en
Pages : 484

Get Book Here

Book Description
Presents the latest knowledge of improving the stress tolerance, yield, and quality of rice crops One of the most important cereal crops, rice provides food to more than half of the world population. Various abiotic stresses—currently impacting an estimated 60% of crop yields—are projected to increase in severity and frequency due to climate change. In light of the threat of global food grain insecurity, interest in molecular rice breeding has intensified in recent years. Progress has been made, but there remains an urgent need to develop stress-tolerant, bio-fortified rice varieties that provide consistent and high-quality yields under both stress and non-stress conditions. Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality is the first book to provide comprehensive and up-to-date coverage of this critical topic, containing the physiological, biochemical, and molecular information required to develop effective engineering strategies for enhancing rice yield. Authoritative and in-depth chapters examine the molecular and genetic bases of abiotic stress tolerance, discuss yield and quality improvement of rice, and explore new approaches to better utilize natural resources through modern breeding. Topics Include rice adaptation to climate change, enriching rice yields under low phosphorus and light intensity, increasing iron, zinc, vitamin and antioxidant content, and improving tolerance to salinity, drought, heat, cold, submergence, heavy metals and Ultraviolet-B radiation. This important resource: Contains the latest scientific information on a wide range of topics central to molecular breeding for rice Provides timely coverage molecular breeding for improving abiotic stress tolerance, bioavailability of essential micronutrients, and crop productivity through biotechnological methods Features detailed chapters written by internationally-recognized experts in the field Discusses recent progress and future directions in molecular breeding strategies and research Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality is required reading for rice researchers, agriculturists, and agribusiness professionals, and the ideal text for instructors and students in molecular plant breeding, abiotic stress tolerance, environmental science, and plant physiology, biochemistry, molecular biology, and biotechnology.

Rice Improvement

Rice Improvement PDF Author: Jauhar Ali
Publisher: Springer Nature
ISBN: 3030665305
Category : Technology & Engineering
Languages : en
Pages : 507

Get Book Here

Book Description
This book is open access under a CC BY 4.0 license. By 2050, human population is expected to reach 9.7 billion. The demand for increased food production needs to be met from ever reducing resources of land, water and other environmental constraints. Rice remains the staple food source for a majority of the global populations, but especially in Asia where ninety percent of rice is grown and consumed. Climate change continues to impose abiotic and biotic stresses that curtail rice quality and yields. Researchers have been challenged to provide innovative solutions to maintain, or even increase, rice production. Amongst them, the ‘green super rice’ breeding strategy has been successful for leading the development and release of multiple abiotic and biotic stress tolerant rice varieties. Recent advances in plant molecular biology and biotechnologies have led to the identification of stress responsive genes and signaling pathways, which open up new paradigms to augment rice productivity. Accordingly, transcription factors, protein kinases and enzymes for generating protective metabolites and proteins all contribute to an intricate network of events that guard and maintain cellular integrity. In addition, various quantitative trait loci associated with elevated stress tolerance have been cloned, resulting in the detection of novel genes for biotic and abiotic stress resistance. Mechanistic understanding of the genetic basis of traits, such as N and P use, is allowing rice researchers to engineer nutrient-efficient rice varieties, which would result in higher yields with lower inputs. Likewise, the research in micronutrients biosynthesis opens doors to genetic engineering of metabolic pathways to enhance micronutrients production. With third generation sequencing techniques on the horizon, exciting progress can be expected to vastly improve molecular markers for gene-trait associations forecast with increasing accuracy. This book emphasizes on the areas of rice science that attempt to overcome the foremost limitations in rice production. Our intention is to highlight research advances in the fields of physiology, molecular breeding and genetics, with a special focus on increasing productivity, improving biotic and abiotic stress tolerance and nutritional quality of rice.

Advances in Rice Research for Abiotic Stress Tolerance

Advances in Rice Research for Abiotic Stress Tolerance PDF Author: Mirza Hasanuzzaman
Publisher: Woodhead Publishing
ISBN: 0128143339
Category : Science
Languages : en
Pages : 988

Get Book Here

Book Description
Advances in Rice Research for Abiotic Stress Tolerance provides an important guide to recognizing, assessing and addressing the broad range of environmental factors that can inhibit rice yield. As a staple food for nearly half of the world's population, and in light of projected population growth, improving and increasing rice yield is imperative. This book presents current research on abiotic stresses including extreme temperature variance, drought, hypoxia, salinity, heavy metal, nutrient deficiency and toxicity stresses. Going further, it identifies a variety of approaches to alleviate the damaging effects and improving the stress tolerance of rice. Advances in Rice Research for Abiotic Stress Tolerance provides an important reference for those ensuring optimal yields from this globally important food crop. - Covers aspects of abiotic stress, from research, history, practical field problems faced by rice, and the possible remedies to the adverse effects of abiotic stresses - Provides practical insights into a wide range of management and crop improvement practices - Presents a valuable, single-volume sourcebook for rice scientists dealing with agronomy, physiology, molecular biology and biotechnology

Sustainable Solutions for Food Security

Sustainable Solutions for Food Security PDF Author: Atanu Sarkar
Publisher: Springer
ISBN: 3319778781
Category : Science
Languages : en
Pages : 559

Get Book Here

Book Description
This volume is the first centralized source of technological and policy solutions for sustainable agriculture and food systems resilience in the face of climate change. The editors have compiled a comprehensive collection of the latest tested, replicable green technologies and approaches for food security, including smart crops and new agricultural paradigms, sustainable natural resources management, and strategies for risk assessment and governance. Studies from resource-constrained countries with vulnerable populations are emphasized, with contributions on multisector partnership from development professionals. Debates concerning access to climate-smart technologies, intellectual property rights, and international negotiations on technology transfer are also included. The editors are, respectively, a public health physician, a development professional and an environmental scientist. They bring their varied perspectives together to curate a holistic volume that will be useful for policy makers, scientists, community-based organizations, international organizations and researchers across the world.

Planthoppers

Planthoppers PDF Author: Kong Luen Heong
Publisher: Int. Rice Res. Inst.
ISBN: 9712202518
Category : Planthoppers
Languages : en
Pages : 470

Get Book Here

Book Description


Hot, Hungry Planet

Hot, Hungry Planet PDF Author: Lisa Palmer
Publisher: St. Martin's Press
ISBN: 1250084202
Category : Political Science
Languages : en
Pages : 252

Get Book Here

Book Description
The U.N. predicts the Earth will have more than 9.6 billion people by 2050. With resources already scarce, how will we feed them all? Journalist Lisa Palmer has traveled the world for years, documenting the cutting-edge innovations of people and organizations on the front lines of fighting the food gap.

Molecular Genetics, Genomics and Biotechnology of Crop Plants Breeding

Molecular Genetics, Genomics and Biotechnology of Crop Plants Breeding PDF Author: Søren K. Rasmussen
Publisher: MDPI
ISBN: 3039288776
Category : Science
Languages : en
Pages : 238

Get Book Here

Book Description
This Special Issue on molecular genetics, genomics, and biotechnology in crop plant breeding seeks to encourage the use of the tools currently available. It features nine research papers that address quality traits, grain yield, and mutations by exploring cytoplasmic male sterility, the delicate control of flowering in rice, the removal of anti-nutritional factors, the use and development of new technologies for non-model species marker technology, site-directed mutagenesis and GMO regulation, genomics selection and genome-wide association studies, how to cope with abiotic stress, and an exploration of fruit trees adapted to harsh environments for breeding purposes. A further four papers review the genetics of pre-harvest spouting, readiness for climate-smart crop development, genomic selection in the breeding of cereal crops, and the large numbers of mutants in straw lignin biosynthesis and deposition.