Author: David Hestenes
Publisher: Springer Science & Business Media
ISBN: 9789027725615
Category : Mathematics
Languages : en
Pages : 340
Book Description
Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.
Clifford Algebra to Geometric Calculus
Author: David Hestenes
Publisher: Springer Science & Business Media
ISBN: 9789027725615
Category : Mathematics
Languages : en
Pages : 340
Book Description
Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.
Publisher: Springer Science & Business Media
ISBN: 9789027725615
Category : Mathematics
Languages : en
Pages : 340
Book Description
Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.
An Introduction to Clifford Algebras and Spinors
Author: Jayme Vaz Jr.
Publisher: Oxford University Press
ISBN: 0198782926
Category : Mathematics
Languages : en
Pages : 257
Book Description
This work is unique compared to the existing literature. It is very didactical and accessible to both students and researchers, without neglecting the formal character and the deep algebraic completeness of the topic along with its physical applications.
Publisher: Oxford University Press
ISBN: 0198782926
Category : Mathematics
Languages : en
Pages : 257
Book Description
This work is unique compared to the existing literature. It is very didactical and accessible to both students and researchers, without neglecting the formal character and the deep algebraic completeness of the topic along with its physical applications.
Geometric Algebra for Physicists
Author: Chris Doran
Publisher: Cambridge University Press
ISBN: 1139643142
Category : Science
Languages : en
Pages : 647
Book Description
Geometric algebra is a powerful mathematical language with applications across a range of subjects in physics and engineering. This book is a complete guide to the current state of the subject with early chapters providing a self-contained introduction to geometric algebra. Topics covered include new techniques for handling rotations in arbitrary dimensions, and the links between rotations, bivectors and the structure of the Lie groups. Following chapters extend the concept of a complex analytic function theory to arbitrary dimensions, with applications in quantum theory and electromagnetism. Later chapters cover advanced topics such as non-Euclidean geometry, quantum entanglement, and gauge theories. Applications such as black holes and cosmic strings are also explored. It can be used as a graduate text for courses on the physical applications of geometric algebra and is also suitable for researchers working in the fields of relativity and quantum theory.
Publisher: Cambridge University Press
ISBN: 1139643142
Category : Science
Languages : en
Pages : 647
Book Description
Geometric algebra is a powerful mathematical language with applications across a range of subjects in physics and engineering. This book is a complete guide to the current state of the subject with early chapters providing a self-contained introduction to geometric algebra. Topics covered include new techniques for handling rotations in arbitrary dimensions, and the links between rotations, bivectors and the structure of the Lie groups. Following chapters extend the concept of a complex analytic function theory to arbitrary dimensions, with applications in quantum theory and electromagnetism. Later chapters cover advanced topics such as non-Euclidean geometry, quantum entanglement, and gauge theories. Applications such as black holes and cosmic strings are also explored. It can be used as a graduate text for courses on the physical applications of geometric algebra and is also suitable for researchers working in the fields of relativity and quantum theory.
Clifford Algebra and Spinor-Valued Functions
Author: R. Delanghe
Publisher: Springer Science & Business Media
ISBN: 9401129223
Category : Mathematics
Languages : en
Pages : 501
Book Description
This volume describes the substantial developments in Clifford analysis which have taken place during the last decade and, in particular, the role of the spin group in the study of null solutions of real and complexified Dirac and Laplace operators. The book has six main chapters. The first two (Chapters 0 and I) present classical results on real and complex Clifford algebras and show how lower-dimensional real Clifford algebras are well-suited for describing basic geometric notions in Euclidean space. Chapters II and III illustrate how Clifford analysis extends and refines the computational tools available in complex analysis in the plane or harmonic analysis in space. In Chapter IV the concept of monogenic differential forms is generalized to the case of spin-manifolds. Chapter V deals with analysis on homogeneous spaces, and shows how Clifford analysis may be connected with the Penrose transform. The volume concludes with some Appendices which present basic results relating to the algebraic and analytic structures discussed. These are made accessible for computational purposes by means of computer algebra programmes written in REDUCE and are contained on an accompanying floppy disk.
Publisher: Springer Science & Business Media
ISBN: 9401129223
Category : Mathematics
Languages : en
Pages : 501
Book Description
This volume describes the substantial developments in Clifford analysis which have taken place during the last decade and, in particular, the role of the spin group in the study of null solutions of real and complexified Dirac and Laplace operators. The book has six main chapters. The first two (Chapters 0 and I) present classical results on real and complex Clifford algebras and show how lower-dimensional real Clifford algebras are well-suited for describing basic geometric notions in Euclidean space. Chapters II and III illustrate how Clifford analysis extends and refines the computational tools available in complex analysis in the plane or harmonic analysis in space. In Chapter IV the concept of monogenic differential forms is generalized to the case of spin-manifolds. Chapter V deals with analysis on homogeneous spaces, and shows how Clifford analysis may be connected with the Penrose transform. The volume concludes with some Appendices which present basic results relating to the algebraic and analytic structures discussed. These are made accessible for computational purposes by means of computer algebra programmes written in REDUCE and are contained on an accompanying floppy disk.
Geometric Computing with Clifford Algebras
Author: Gerald Sommer
Publisher: Springer Science & Business Media
ISBN: 3662046210
Category : Computers
Languages : en
Pages : 559
Book Description
This monograph-like anthology introduces the concepts and framework of Clifford algebra. It provides a rich source of examples of how to work with this formalism. Clifford or geometric algebra shows strong unifying aspects and turned out in the 1960s to be a most adequate formalism for describing different geometry-related algebraic systems as specializations of one "mother algebra" in various subfields of physics and engineering. Recent work shows that Clifford algebra provides a universal and powerful algebraic framework for an elegant and coherent representation of various problems occurring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics.
Publisher: Springer Science & Business Media
ISBN: 3662046210
Category : Computers
Languages : en
Pages : 559
Book Description
This monograph-like anthology introduces the concepts and framework of Clifford algebra. It provides a rich source of examples of how to work with this formalism. Clifford or geometric algebra shows strong unifying aspects and turned out in the 1960s to be a most adequate formalism for describing different geometry-related algebraic systems as specializations of one "mother algebra" in various subfields of physics and engineering. Recent work shows that Clifford algebra provides a universal and powerful algebraic framework for an elegant and coherent representation of various problems occurring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics.
Clifford Algebras and Lie Theory
Author: Eckhard Meinrenken
Publisher: Springer Science & Business Media
ISBN: 3642362168
Category : Mathematics
Languages : en
Pages : 331
Book Description
This monograph provides an introduction to the theory of Clifford algebras, with an emphasis on its connections with the theory of Lie groups and Lie algebras. The book starts with a detailed presentation of the main results on symmetric bilinear forms and Clifford algebras. It develops the spin groups and the spin representation, culminating in Cartan’s famous triality automorphism for the group Spin(8). The discussion of enveloping algebras includes a presentation of Petracci’s proof of the Poincaré–Birkhoff–Witt theorem. This is followed by discussions of Weil algebras, Chern--Weil theory, the quantum Weil algebra, and the cubic Dirac operator. The applications to Lie theory include Duflo’s theorem for the case of quadratic Lie algebras, multiplets of representations, and Dirac induction. The last part of the book is an account of Kostant’s structure theory of the Clifford algebra over a semisimple Lie algebra. It describes his “Clifford algebra analogue” of the Hopf–Koszul–Samelson theorem, and explains his fascinating conjecture relating the Harish-Chandra projection for Clifford algebras to the principal sl(2) subalgebra. Aside from these beautiful applications, the book will serve as a convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics.
Publisher: Springer Science & Business Media
ISBN: 3642362168
Category : Mathematics
Languages : en
Pages : 331
Book Description
This monograph provides an introduction to the theory of Clifford algebras, with an emphasis on its connections with the theory of Lie groups and Lie algebras. The book starts with a detailed presentation of the main results on symmetric bilinear forms and Clifford algebras. It develops the spin groups and the spin representation, culminating in Cartan’s famous triality automorphism for the group Spin(8). The discussion of enveloping algebras includes a presentation of Petracci’s proof of the Poincaré–Birkhoff–Witt theorem. This is followed by discussions of Weil algebras, Chern--Weil theory, the quantum Weil algebra, and the cubic Dirac operator. The applications to Lie theory include Duflo’s theorem for the case of quadratic Lie algebras, multiplets of representations, and Dirac induction. The last part of the book is an account of Kostant’s structure theory of the Clifford algebra over a semisimple Lie algebra. It describes his “Clifford algebra analogue” of the Hopf–Koszul–Samelson theorem, and explains his fascinating conjecture relating the Harish-Chandra projection for Clifford algebras to the principal sl(2) subalgebra. Aside from these beautiful applications, the book will serve as a convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics.
Quaternions, Clifford Algebras and Relativistic Physics
Author: Patrick R. Girard
Publisher: Springer Science & Business Media
ISBN: 3764377917
Category : Mathematics
Languages : en
Pages : 177
Book Description
The use of Clifford algebras in mathematical physics and engineering has grown rapidly in recent years. Whereas other developments have privileged a geometric approach, this book uses an algebraic approach that can be introduced as a tensor product of quaternion algebras and provides a unified calculus for much of physics. It proposes a pedagogical introduction to this new calculus, based on quaternions, with applications mainly in special relativity, classical electromagnetism, and general relativity.
Publisher: Springer Science & Business Media
ISBN: 3764377917
Category : Mathematics
Languages : en
Pages : 177
Book Description
The use of Clifford algebras in mathematical physics and engineering has grown rapidly in recent years. Whereas other developments have privileged a geometric approach, this book uses an algebraic approach that can be introduced as a tensor product of quaternion algebras and provides a unified calculus for much of physics. It proposes a pedagogical introduction to this new calculus, based on quaternions, with applications mainly in special relativity, classical electromagnetism, and general relativity.
A New Approach to Differential Geometry using Clifford's Geometric Algebra
Author: John Snygg
Publisher: Springer Science & Business Media
ISBN: 081768283X
Category : Mathematics
Languages : en
Pages : 472
Book Description
Differential geometry is the study of the curvature and calculus of curves and surfaces. A New Approach to Differential Geometry using Clifford's Geometric Algebra simplifies the discussion to an accessible level of differential geometry by introducing Clifford algebra. This presentation is relevant because Clifford algebra is an effective tool for dealing with the rotations intrinsic to the study of curved space. Complete with chapter-by-chapter exercises, an overview of general relativity, and brief biographies of historical figures, this comprehensive textbook presents a valuable introduction to differential geometry. It will serve as a useful resource for upper-level undergraduates, beginning-level graduate students, and researchers in the algebra and physics communities.
Publisher: Springer Science & Business Media
ISBN: 081768283X
Category : Mathematics
Languages : en
Pages : 472
Book Description
Differential geometry is the study of the curvature and calculus of curves and surfaces. A New Approach to Differential Geometry using Clifford's Geometric Algebra simplifies the discussion to an accessible level of differential geometry by introducing Clifford algebra. This presentation is relevant because Clifford algebra is an effective tool for dealing with the rotations intrinsic to the study of curved space. Complete with chapter-by-chapter exercises, an overview of general relativity, and brief biographies of historical figures, this comprehensive textbook presents a valuable introduction to differential geometry. It will serve as a useful resource for upper-level undergraduates, beginning-level graduate students, and researchers in the algebra and physics communities.
Clifford Algebras and Spinors
Author: Pertti Lounesto
Publisher: Cambridge University Press
ISBN: 0521005515
Category : Mathematics
Languages : en
Pages : 352
Book Description
This is the second edition of a popular work offering a unique introduction to Clifford algebras and spinors. The beginning chapters could be read by undergraduates; vectors, complex numbers and quaternions are introduced with an eye on Clifford algebras. The next chapters will also interest physicists, and include treatments of the quantum mechanics of the electron, electromagnetism and special relativity with a flavour of Clifford algebras. This edition has three new chapters, including material on conformal invariance and a history of Clifford algebras.
Publisher: Cambridge University Press
ISBN: 0521005515
Category : Mathematics
Languages : en
Pages : 352
Book Description
This is the second edition of a popular work offering a unique introduction to Clifford algebras and spinors. The beginning chapters could be read by undergraduates; vectors, complex numbers and quaternions are introduced with an eye on Clifford algebras. The next chapters will also interest physicists, and include treatments of the quantum mechanics of the electron, electromagnetism and special relativity with a flavour of Clifford algebras. This edition has three new chapters, including material on conformal invariance and a history of Clifford algebras.
Clifford Algebras and their Applications in Mathematical Physics
Author: A. Micali
Publisher: Springer Science & Business Media
ISBN: 9401580901
Category : Mathematics
Languages : en
Pages : 509
Book Description
This volume contains selected papers presented at the Second Workshop on Clifford Algebras and their Applications in Mathematical Physics. These papers range from various algebraic and analytic aspects of Clifford algebras to applications in, for example, gauge fields, relativity theory, supersymmetry and supergravity, and condensed phase physics. Included is a biography and list of publications of Mário Schenberg, who, next to Marcel Riesz, has made valuable contributions to these topics. This volume will be of interest to mathematicians working in the fields of algebra, geometry or special functions, to physicists working on quantum mechanics or supersymmetry, and to historians of mathematical physics.
Publisher: Springer Science & Business Media
ISBN: 9401580901
Category : Mathematics
Languages : en
Pages : 509
Book Description
This volume contains selected papers presented at the Second Workshop on Clifford Algebras and their Applications in Mathematical Physics. These papers range from various algebraic and analytic aspects of Clifford algebras to applications in, for example, gauge fields, relativity theory, supersymmetry and supergravity, and condensed phase physics. Included is a biography and list of publications of Mário Schenberg, who, next to Marcel Riesz, has made valuable contributions to these topics. This volume will be of interest to mathematicians working in the fields of algebra, geometry or special functions, to physicists working on quantum mechanics or supersymmetry, and to historians of mathematical physics.