Classification, Parameter Estimation and State Estimation

Classification, Parameter Estimation and State Estimation PDF Author: Ferdinand van der Heijden
Publisher: John Wiley & Sons
ISBN: 0470090146
Category : Science
Languages : en
Pages : 440

Get Book Here

Book Description
Classification, Parameter Estimation and State Estimation is a practical guide for data analysts and designers of measurement systems and postgraduates students that are interested in advanced measurement systems using MATLAB. 'Prtools' is a powerful MATLAB toolbox for pattern recognition and is written and owned by one of the co-authors, B. Duin of the Delft University of Technology. After an introductory chapter, the book provides the theoretical construction for classification, estimation and state estimation. The book also deals with the skills required to bring the theoretical concepts to practical systems, and how to evaluate these systems. Together with the many examples in the chapters, the book is accompanied by a MATLAB toolbox for pattern recognition and classification. The appendix provides the necessary documentation for this toolbox as well as an overview of the most useful functions from these toolboxes. With its integrated and unified approach to classification, parameter estimation and state estimation, this book is a suitable practical supplement in existing university courses in pattern classification, optimal estimation and data analysis. Covers all contemporary main methods for classification and estimation. Integrated approach to classification, parameter estimation and state estimation Highlights the practical deployment of theoretical issues. Provides a concise and practical approach supported by MATLAB toolbox. Offers exercises at the end of each chapter and numerous worked out examples. PRtools toolbox (MATLAB) and code of worked out examples available from the internet Many examples showing implementations in MATLAB Enables students to practice their skills using a MATLAB environment

Classification, Parameter Estimation and State Estimation

Classification, Parameter Estimation and State Estimation PDF Author: Ferdinand van der Heijden
Publisher: John Wiley & Sons
ISBN: 0470090146
Category : Science
Languages : en
Pages : 440

Get Book Here

Book Description
Classification, Parameter Estimation and State Estimation is a practical guide for data analysts and designers of measurement systems and postgraduates students that are interested in advanced measurement systems using MATLAB. 'Prtools' is a powerful MATLAB toolbox for pattern recognition and is written and owned by one of the co-authors, B. Duin of the Delft University of Technology. After an introductory chapter, the book provides the theoretical construction for classification, estimation and state estimation. The book also deals with the skills required to bring the theoretical concepts to practical systems, and how to evaluate these systems. Together with the many examples in the chapters, the book is accompanied by a MATLAB toolbox for pattern recognition and classification. The appendix provides the necessary documentation for this toolbox as well as an overview of the most useful functions from these toolboxes. With its integrated and unified approach to classification, parameter estimation and state estimation, this book is a suitable practical supplement in existing university courses in pattern classification, optimal estimation and data analysis. Covers all contemporary main methods for classification and estimation. Integrated approach to classification, parameter estimation and state estimation Highlights the practical deployment of theoretical issues. Provides a concise and practical approach supported by MATLAB toolbox. Offers exercises at the end of each chapter and numerous worked out examples. PRtools toolbox (MATLAB) and code of worked out examples available from the internet Many examples showing implementations in MATLAB Enables students to practice their skills using a MATLAB environment

Classification, Parameter Estimation, and State Estimation

Classification, Parameter Estimation, and State Estimation PDF Author: Ferdinand van der Heijden
Publisher:
ISBN: 9781119152484
Category : TECHNOLOGY & ENGINEERING
Languages : en
Pages :

Get Book Here

Book Description


Classification, Parameter Estimation and State Estimation

Classification, Parameter Estimation and State Estimation PDF Author: Bangjun Lei
Publisher: John Wiley & Sons
ISBN: 1119152445
Category : Science
Languages : en
Pages : 483

Get Book Here

Book Description
A practical introduction to intelligent computer vision theory, design, implementation, and technology The past decade has witnessed epic growth in image processing and intelligent computer vision technology. Advancements in machine learning methods—especially among adaboost varieties and particle filtering methods—have made machine learning in intelligent computer vision more accurate and reliable than ever before. The need for expert coverage of the state of the art in this burgeoning field has never been greater, and this book satisfies that need. Fully updated and extensively revised, this 2nd Edition of the popular guide provides designers, data analysts, researchers and advanced post-graduates with a fundamental yet wholly practical introduction to intelligent computer vision. The authors walk you through the basics of computer vision, past and present, and they explore the more subtle intricacies of intelligent computer vision, with an emphasis on intelligent measurement systems. Using many timely, real-world examples, they explain and vividly demonstrate the latest developments in image and video processing techniques and technologies for machine learning in computer vision systems, including: PRTools5 software for MATLAB—especially the latest representation and generalization software toolbox for PRTools5 Machine learning applications for computer vision, with detailed discussions of contemporary state estimation techniques vs older content of particle filter methods The latest techniques for classification and supervised learning, with an emphasis on Neural Network, Genetic State Estimation and other particle filter and AI state estimation methods All new coverage of the Adaboost and its implementation in PRTools5. A valuable working resource for professionals and an excellent introduction for advanced-level students, this 2nd Edition features a wealth of illustrative examples, ranging from basic techniques to advanced intelligent computer vision system implementations. Additional examples and tutorials, as well as a question and solution forum, can be found on a companion website.

Classification, Parameter Estimation and State Estimation, 2nd Edition

Classification, Parameter Estimation and State Estimation, 2nd Edition PDF Author: Bangjun Lei
Publisher:
ISBN:
Category :
Languages : en
Pages : 480

Get Book Here

Book Description
A practical introduction to intelligent computer vision theory, design, implementation, and technology The past decade has witnessed epic growth in image processing and intelligent computer vision technology. Advancements in machine learning methods-especially among adaboost varieties and particle filtering methods-have made machine learning in intelligent computer vision more accurate and reliable than ever before. The need for expert coverage of the state of the art in this burgeoning field has never been greater, and this book satisfies that need. Fully updated and extensively revised, this 2nd Edition of the popular guide provides designers, data analysts, researchers and advanced post-graduates with a fundamental yet wholly practical introduction to intelligent computer vision. The authors walk you through the basics of computer vision, past and present, and they explore the more subtle intricacies of intelligent computer vision, with an emphasis on intelligent measurement systems. Using many timely, real-world examples, they explain and vividly demonstrate the latest developments in image and video processing techniques and technologies for machine learning in computer vision systems, including: PRTools5 software for MATLAB-especially the latest representation and generalization software toolbox for PRTools5 Machine learning applications for computer vision, with detailed discussions of contemporary state estimation techniques vs older content of particle filter methods The latest techniques for classification and supervised learning, with an emphasis on Neural Network, Genetic State Estimation and other particle filter and AI state estimation methods All new coverage of the Adaboost and its implementation in PRTools5. A valuable working resource for professionals and an excellent introduction for advanced-level students, this 2nd Edition features a wealth of illustrative examples, ranging from basic techniques to advanced intelligent computer vision system implementations. Additional examples and tutorials, as well as a question and solution forum, can be found on a companion website.

Power System State Estimation

Power System State Estimation PDF Author: Ali Abur
Publisher: CRC Press
ISBN: 9780203913673
Category : Technology & Engineering
Languages : en
Pages : 350

Get Book Here

Book Description
Offering an up-to-date account of the strategies utilized in state estimation of electric power systems, this text provides a broad overview of power system operation and the role of state estimation in overall energy management. It uses an abundance of examples, models, tables, and guidelines to clearly examine new aspects of state estimation, the testing of network observability, and methods to assure computational efficiency. Includes numerous tutorial examples that fully analyze problems posed by the inclusion of current measurements in existing state estimators and illustrate practical solutions to these challenges. Written by two expert researchers in the field, Power System State Estimation extensively details topics never before covered in depth in any other text, including novel robust state estimation methods, estimation of parameter and topology errors, and the use of ampere measurements for state estimation. It introduces various methods and computational issues involved in the formulation and implementation of the weighted least squares (WLS) approach, presents statistical tests for the detection and identification of bad data in system measurements, and reveals alternative topological and numerical formulations for the network observability problem.

Ultrasonic Fluid Quantity Measurement in Dynamic Vehicular Applications

Ultrasonic Fluid Quantity Measurement in Dynamic Vehicular Applications PDF Author: Jenny Terzic
Publisher: Springer Science & Business Media
ISBN: 3319006339
Category : Technology & Engineering
Languages : en
Pages : 137

Get Book Here

Book Description
Accurate fluid level measurement in dynamic environments can be assessed using a Support Vector Machine (SVM) approach. SVM is a supervised learning model that analyzes and recognizes patterns. It is a signal classification technique which has far greater accuracy than conventional signal averaging methods. Ultrasonic Fluid Quantity Measurement in Dynamic Vehicular Applications: A Support Vector Machine Approach describes the research and development of a fluid level measurement system for dynamic environments. The measurement system is based on a single ultrasonic sensor. A Support Vector Machines (SVM) based signal characterization and processing system has been developed to compensate for the effects of slosh and temperature variation in fluid level measurement systems used in dynamic environments including automotive applications. It has been demonstrated that a simple ν-SVM model with Radial Basis Function (RBF) Kernel with the inclusion of a Moving Median filter could be used to achieve the high levels of accuracy required for fluid level measurement in dynamic environments. Aimed toward graduate and postgraduate students, researchers, and engineers studying applications of artificial intelligence, readers will learn about a measurement system that is based on a single ultrasonic sensor which can achieve the high levels of accuracy required for fluid level measurement in dynamic environments.

Encyclopedia of Artificial Intelligence

Encyclopedia of Artificial Intelligence PDF Author: Juan Ramon Rabunal
Publisher: IGI Global
ISBN: 1599048507
Category : Computers
Languages : en
Pages : 1673

Get Book Here

Book Description
"This book is a comprehensive and in-depth reference to the most recent developments in the field covering theoretical developments, techniques, technologies, among others"--Provided by publisher.

Multiple Classifier Systems

Multiple Classifier Systems PDF Author: Michal Haindl
Publisher: Springer
ISBN: 3540725237
Category : Computers
Languages : en
Pages : 535

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 7th International Workshop on Multiple Classifier Systems, MCS 2007, held in Prague, Czech Republic in May 2007. It covers kernel-based fusion, applications, boosting, cluster and graph ensembles, feature subspace ensembles, multiple classifier system theory, intramodal and multimodal fusion of biometric experts, majority voting, and ensemble learning.

Computational Intelligence

Computational Intelligence PDF Author: Christine L. Mumford
Publisher: Springer Science & Business Media
ISBN: 3642017991
Category : Computers
Languages : en
Pages : 726

Get Book Here

Book Description
This book is about synergy in computational intelligence (CI). It is a c- lection of chapters that covers a rich and diverse variety of computer-based techniques, all involving some aspect of computational intelligence, but each one taking a somewhat pragmatic view. Many complex problems in the real world require the application of some form of what we loosely call “intel- gence”fortheirsolution. Fewcanbesolvedbythenaiveapplicationofasingle technique, however good it is. Authors in this collection recognize the li- tations of individual paradigms, and propose some practical and novel ways in which di?erent CI techniques can be combined with each other, or with more traditional computational techniques, to produce powerful probl- solving environments which exhibit synergy, i. e. , systems in which the whole 1 is greater than the sum of the parts . Computational intelligence is a relatively new term, and there is some d- agreement as to its precise de?nition. Some practitioners limit its scope to schemes involving evolutionary algorithms, neural networks, fuzzy logic, or hybrids of these. For others, the de?nition is a little more ?exible, and will include paradigms such as Bayesian belief networks, multi-agent systems, case-based reasoning and so on. Generally, the term has a similar meaning to the well-known phrase “Arti?cial Intelligence” (AI), although CI is p- ceived moreas a “bottom up” approachfrom which intelligent behaviour can emerge,whereasAItendstobestudiedfromthe“topdown”,andderivefrom pondering upon the “meaning of intelligence”. (These and other key issues will be discussed in more detail in Chapter 1.

Progress in Pattern Recognition, Image Analysis and Applications

Progress in Pattern Recognition, Image Analysis and Applications PDF Author: José Ruiz-Shulcloper
Publisher: Springer Science & Business Media
ISBN: 3540859195
Category : Computers
Languages : en
Pages : 828

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 13th Iberoamerican Congress on Pattern Recognition, CIARP 2008, held in Havana, Cuba, in September 2008. The 93 revised full papers presented together with 3 keynote articles were carefully reviewed and selected from 182 submissions. The papers are organized in topical sections on signal analysis for characterization and filtering, analysis of shape and texture, analysis of speech and language, data mining, clustering of images and documents, statistical pattern recognition, classification and description of objects, classification and edition, geometric image analysis, neural networks, computer vision, image coding, associative memories and neural networks, interpolation and video tracking, images analysis, music and speech analysis, as well as classifier combination and document filtering.