Author: Willi Freeden
Publisher: Springer Science & Business Media
ISBN: 1461220483
Category : Mathematics
Languages : en
Pages : 522
Book Description
This self-contained text/reference provides a basic foundation for practitioners, researchers, and students interested in any of the diverse areas of multiscale (geo)potential theory. New mathematical methods are developed enabling the gravitational potential of a planetary body to be modeled using a continuous flow of observations from land or satellite devices. Harmonic wavelets methods are introduced, as well as fast computational schemes and various numerical test examples. Presented are multiscale approaches for numerous geoscientific problems, including geoidal determination, magnetic field reconstruction, deformation analysis, and density variation modelling With exercises at the end of each chapter, the book may be used as a textbook for graduate-level courses in geomathematics, applied mathematics, and geophysics. The work is also an up-to-date reference text for geoscientists, applied mathematicians, and engineers.
Multiscale Potential Theory
Author: Willi Freeden
Publisher: Springer Science & Business Media
ISBN: 1461220483
Category : Mathematics
Languages : en
Pages : 522
Book Description
This self-contained text/reference provides a basic foundation for practitioners, researchers, and students interested in any of the diverse areas of multiscale (geo)potential theory. New mathematical methods are developed enabling the gravitational potential of a planetary body to be modeled using a continuous flow of observations from land or satellite devices. Harmonic wavelets methods are introduced, as well as fast computational schemes and various numerical test examples. Presented are multiscale approaches for numerous geoscientific problems, including geoidal determination, magnetic field reconstruction, deformation analysis, and density variation modelling With exercises at the end of each chapter, the book may be used as a textbook for graduate-level courses in geomathematics, applied mathematics, and geophysics. The work is also an up-to-date reference text for geoscientists, applied mathematicians, and engineers.
Publisher: Springer Science & Business Media
ISBN: 1461220483
Category : Mathematics
Languages : en
Pages : 522
Book Description
This self-contained text/reference provides a basic foundation for practitioners, researchers, and students interested in any of the diverse areas of multiscale (geo)potential theory. New mathematical methods are developed enabling the gravitational potential of a planetary body to be modeled using a continuous flow of observations from land or satellite devices. Harmonic wavelets methods are introduced, as well as fast computational schemes and various numerical test examples. Presented are multiscale approaches for numerous geoscientific problems, including geoidal determination, magnetic field reconstruction, deformation analysis, and density variation modelling With exercises at the end of each chapter, the book may be used as a textbook for graduate-level courses in geomathematics, applied mathematics, and geophysics. The work is also an up-to-date reference text for geoscientists, applied mathematicians, and engineers.
Potential Theory - ICPT 94
Author: Josef Kral
Publisher: Walter de Gruyter
ISBN: 3110818574
Category : Mathematics
Languages : en
Pages : 513
Book Description
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Publisher: Walter de Gruyter
ISBN: 3110818574
Category : Mathematics
Languages : en
Pages : 513
Book Description
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Potential Theory in Gravity and Magnetic Applications
Author: Richard J. Blakely
Publisher: Cambridge University Press
ISBN: 9780521575478
Category : Mathematics
Languages : en
Pages : 468
Book Description
This text bridges the gap between the classic texts on potential theory and modern books on applied geophysics. It opens with an introduction to potential theory, emphasising those aspects particularly important to earth scientists, such as Laplace's equation, Newtonian potential, magnetic and electrostatic fields, and conduction of heat. The theory is then applied to the interpretation of gravity and magnetic anomalies, drawing on examples from modern geophysical literature. Topics explored include regional and global fields, forward modeling, inverse methods, depth-to-source estimation, ideal bodies, analytical continuation, and spectral analysis. The book includes numerous exercises and a variety of computer subroutines written in FORTRAN. Graduate students and researchers in geophysics will find this book essential.
Publisher: Cambridge University Press
ISBN: 9780521575478
Category : Mathematics
Languages : en
Pages : 468
Book Description
This text bridges the gap between the classic texts on potential theory and modern books on applied geophysics. It opens with an introduction to potential theory, emphasising those aspects particularly important to earth scientists, such as Laplace's equation, Newtonian potential, magnetic and electrostatic fields, and conduction of heat. The theory is then applied to the interpretation of gravity and magnetic anomalies, drawing on examples from modern geophysical literature. Topics explored include regional and global fields, forward modeling, inverse methods, depth-to-source estimation, ideal bodies, analytical continuation, and spectral analysis. The book includes numerous exercises and a variety of computer subroutines written in FORTRAN. Graduate students and researchers in geophysics will find this book essential.
Logarithmic Potentials with External Fields
Author: Edward B. Saff
Publisher: Springer Science & Business Media
ISBN: 3662033291
Category : Mathematics
Languages : en
Pages : 517
Book Description
In recent years approximation theory and the theory of orthogonal polynomials have witnessed a dramatic increase in the number of solutions of difficult and previously untouchable problems. This is due to the interaction of approximation theoretical techniques with classical potential theory (more precisely, the theory of logarithmic potentials, which is directly related to polynomials and to problems in the plane or on the real line). Most of the applications are based on an exten sion of classical logarithmic potential theory to the case when there is a weight (external field) present. The list of recent developments is quite impressive and includes: creation of the theory of non-classical orthogonal polynomials with re spect to exponential weights; the theory of orthogonal polynomials with respect to general measures with compact support; the theory of incomplete polynomials and their widespread generalizations, and the theory of multipoint Pade approximation. The new approach has produced long sought solutions for many problems; most notably, the Freud problems on the asymptotics of orthogonal polynomials with a respect to weights of the form exp(-Ixl ); the "l/9-th" conjecture on rational approximation of exp(x); and the problem of the exact asymptotic constant in the rational approximation of Ixl. One aim of the present book is to provide a self-contained introduction to the aforementioned "weighted" potential theory as well as to its numerous applications. As a side-product we shall also fully develop the classical theory of logarithmic potentials.
Publisher: Springer Science & Business Media
ISBN: 3662033291
Category : Mathematics
Languages : en
Pages : 517
Book Description
In recent years approximation theory and the theory of orthogonal polynomials have witnessed a dramatic increase in the number of solutions of difficult and previously untouchable problems. This is due to the interaction of approximation theoretical techniques with classical potential theory (more precisely, the theory of logarithmic potentials, which is directly related to polynomials and to problems in the plane or on the real line). Most of the applications are based on an exten sion of classical logarithmic potential theory to the case when there is a weight (external field) present. The list of recent developments is quite impressive and includes: creation of the theory of non-classical orthogonal polynomials with re spect to exponential weights; the theory of orthogonal polynomials with respect to general measures with compact support; the theory of incomplete polynomials and their widespread generalizations, and the theory of multipoint Pade approximation. The new approach has produced long sought solutions for many problems; most notably, the Freud problems on the asymptotics of orthogonal polynomials with a respect to weights of the form exp(-Ixl ); the "l/9-th" conjecture on rational approximation of exp(x); and the problem of the exact asymptotic constant in the rational approximation of Ixl. One aim of the present book is to provide a self-contained introduction to the aforementioned "weighted" potential theory as well as to its numerous applications. As a side-product we shall also fully develop the classical theory of logarithmic potentials.
Classical and Modern Potential Theory and Applications
Author: K. GowriSankaran
Publisher: Springer Science & Business Media
ISBN: 9401111383
Category : Mathematics
Languages : en
Pages : 467
Book Description
Proceedings of the NATO Advanced Research Workshop, Château de Bonas, France, July 25--31, 1993
Publisher: Springer Science & Business Media
ISBN: 9401111383
Category : Mathematics
Languages : en
Pages : 467
Book Description
Proceedings of the NATO Advanced Research Workshop, Château de Bonas, France, July 25--31, 1993
Classical Potential Theory and Its Probabilistic Counterpart
Author: J. L. Doob
Publisher: Springer Science & Business Media
ISBN: 1461252083
Category : Mathematics
Languages : en
Pages : 865
Book Description
Potential theory and certain aspects of probability theory are intimately related, perhaps most obviously in that the transition function determining a Markov process can be used to define the Green function of a potential theory. Thus it is possible to define and develop many potential theoretic concepts probabilistically, a procedure potential theorists observe withjaun diced eyes in view of the fact that now as in the past their subject provides the motivation for much of Markov process theory. However that may be it is clear that certain concepts in potential theory correspond closely to concepts in probability theory, specifically to concepts in martingale theory. For example, superharmonic functions correspond to supermartingales. More specifically: the Fatou type boundary limit theorems in potential theory correspond to supermartingale convergence theorems; the limit properties of monotone sequences of superharmonic functions correspond surprisingly closely to limit properties of monotone sequences of super martingales; certain positive superharmonic functions [supermartingales] are called "potentials," have associated measures in their respective theories and are subject to domination principles (inequalities) involving the supports of those measures; in each theory there is a reduction operation whose properties are the same in the two theories and these reductions induce sweeping (balayage) of the measures associated with potentials, and so on.
Publisher: Springer Science & Business Media
ISBN: 1461252083
Category : Mathematics
Languages : en
Pages : 865
Book Description
Potential theory and certain aspects of probability theory are intimately related, perhaps most obviously in that the transition function determining a Markov process can be used to define the Green function of a potential theory. Thus it is possible to define and develop many potential theoretic concepts probabilistically, a procedure potential theorists observe withjaun diced eyes in view of the fact that now as in the past their subject provides the motivation for much of Markov process theory. However that may be it is clear that certain concepts in potential theory correspond closely to concepts in probability theory, specifically to concepts in martingale theory. For example, superharmonic functions correspond to supermartingales. More specifically: the Fatou type boundary limit theorems in potential theory correspond to supermartingale convergence theorems; the limit properties of monotone sequences of superharmonic functions correspond surprisingly closely to limit properties of monotone sequences of super martingales; certain positive superharmonic functions [supermartingales] are called "potentials," have associated measures in their respective theories and are subject to domination principles (inequalities) involving the supports of those measures; in each theory there is a reduction operation whose properties are the same in the two theories and these reductions induce sweeping (balayage) of the measures associated with potentials, and so on.
A Modern Theory of Random Variation
Author: Patrick Muldowney
Publisher: John Wiley & Sons
ISBN: 1118345940
Category : Science
Languages : en
Pages : 493
Book Description
A ground-breaking and practical treatment of probability and stochastic processes A Modern Theory of Random Variation is a new and radical re-formulation of the mathematical underpinnings of subjects as diverse as investment, communication engineering, and quantum mechanics. Setting aside the classical theory of probability measure spaces, the book utilizes a mathematically rigorous version of the theory of random variation that bases itself exclusively on finitely additive probability distribution functions. In place of twentieth century Lebesgue integration and measure theory, the author uses the simpler concept of Riemann sums, and the non-absolute Riemann-type integration of Henstock. Readers are supplied with an accessible approach to standard elements of probability theory such as the central limmit theorem and Brownian motion as well as remarkable, new results on Feynman diagrams and stochastic integrals. Throughout the book, detailed numerical demonstrations accompany the discussions of abstract mathematical theory, from the simplest elements of the subject to the most complex. In addition, an array of numerical examples and vivid illustrations showcase how the presented methods and applications can be undertaken at various levels of complexity. A Modern Theory of Random Variation is a suitable book for courses on mathematical analysis, probability theory, and mathematical finance at the upper-undergraduate and graduate levels. The book is also an indispensible resource for researchers and practitioners who are seeking new concepts, techniques and methodologies in data analysis, numerical calculation, and financial asset valuation. Patrick Muldowney, PhD, served as lecturer at the Magee Business School of the UNiversity of Ulster for over twenty years. Dr. Muldowney has published extensively in his areas of research, including integration theory, financial mathematics, and random variation.
Publisher: John Wiley & Sons
ISBN: 1118345940
Category : Science
Languages : en
Pages : 493
Book Description
A ground-breaking and practical treatment of probability and stochastic processes A Modern Theory of Random Variation is a new and radical re-formulation of the mathematical underpinnings of subjects as diverse as investment, communication engineering, and quantum mechanics. Setting aside the classical theory of probability measure spaces, the book utilizes a mathematically rigorous version of the theory of random variation that bases itself exclusively on finitely additive probability distribution functions. In place of twentieth century Lebesgue integration and measure theory, the author uses the simpler concept of Riemann sums, and the non-absolute Riemann-type integration of Henstock. Readers are supplied with an accessible approach to standard elements of probability theory such as the central limmit theorem and Brownian motion as well as remarkable, new results on Feynman diagrams and stochastic integrals. Throughout the book, detailed numerical demonstrations accompany the discussions of abstract mathematical theory, from the simplest elements of the subject to the most complex. In addition, an array of numerical examples and vivid illustrations showcase how the presented methods and applications can be undertaken at various levels of complexity. A Modern Theory of Random Variation is a suitable book for courses on mathematical analysis, probability theory, and mathematical finance at the upper-undergraduate and graduate levels. The book is also an indispensible resource for researchers and practitioners who are seeking new concepts, techniques and methodologies in data analysis, numerical calculation, and financial asset valuation. Patrick Muldowney, PhD, served as lecturer at the Magee Business School of the UNiversity of Ulster for over twenty years. Dr. Muldowney has published extensively in his areas of research, including integration theory, financial mathematics, and random variation.
Stratified Lie Groups and Potential Theory for Their Sub-Laplacians
Author: Andrea Bonfiglioli
Publisher: Springer Science & Business Media
ISBN: 3540718974
Category : Mathematics
Languages : en
Pages : 812
Book Description
This book provides an extensive treatment of Potential Theory for sub-Laplacians on stratified Lie groups. It also provides a largely self-contained presentation of stratified Lie groups, and of their Lie algebra of left-invariant vector fields. The presentation is accessible to graduate students and requires no specialized knowledge in algebra or differential geometry.
Publisher: Springer Science & Business Media
ISBN: 3540718974
Category : Mathematics
Languages : en
Pages : 812
Book Description
This book provides an extensive treatment of Potential Theory for sub-Laplacians on stratified Lie groups. It also provides a largely self-contained presentation of stratified Lie groups, and of their Lie algebra of left-invariant vector fields. The presentation is accessible to graduate students and requires no specialized knowledge in algebra or differential geometry.
Potential Theory
Author: Lester L. Helms
Publisher: Springer Science & Business Media
ISBN: 1447164229
Category : Mathematics
Languages : en
Pages : 494
Book Description
Potential Theory presents a clear path from calculus to classical potential theory and beyond, with the aim of moving the reader into the area of mathematical research as quickly as possible. The subject matter is developed from first principles using only calculus. Commencing with the inverse square law for gravitational and electromagnetic forces and the divergence theorem, the author develops methods for constructing solutions of Laplace's equation on a region with prescribed values on the boundary of the region. The latter half of the book addresses more advanced material aimed at those with the background of a senior undergraduate or beginning graduate course in real analysis. Starting with solutions of the Dirichlet problem subject to mixed boundary conditions on the simplest of regions, methods of morphing such solutions onto solutions of Poisson's equation on more general regions are developed using diffeomorphisms and the Perron-Wiener-Brelot method, culminating in application to Brownian motion. In this new edition, many exercises have been added to reconnect the subject matter to the physical sciences. This book will undoubtedly be useful to graduate students and researchers in mathematics, physics and engineering.
Publisher: Springer Science & Business Media
ISBN: 1447164229
Category : Mathematics
Languages : en
Pages : 494
Book Description
Potential Theory presents a clear path from calculus to classical potential theory and beyond, with the aim of moving the reader into the area of mathematical research as quickly as possible. The subject matter is developed from first principles using only calculus. Commencing with the inverse square law for gravitational and electromagnetic forces and the divergence theorem, the author develops methods for constructing solutions of Laplace's equation on a region with prescribed values on the boundary of the region. The latter half of the book addresses more advanced material aimed at those with the background of a senior undergraduate or beginning graduate course in real analysis. Starting with solutions of the Dirichlet problem subject to mixed boundary conditions on the simplest of regions, methods of morphing such solutions onto solutions of Poisson's equation on more general regions are developed using diffeomorphisms and the Perron-Wiener-Brelot method, culminating in application to Brownian motion. In this new edition, many exercises have been added to reconnect the subject matter to the physical sciences. This book will undoubtedly be useful to graduate students and researchers in mathematics, physics and engineering.
Potential Theory in the Complex Plane
Author: Thomas Ransford
Publisher: Cambridge University Press
ISBN: 9780521466547
Category : Mathematics
Languages : en
Pages : 246
Book Description
Potential theory is the broad area of mathematical analysis encompassing such topics as harmonic and subharmonic functions.
Publisher: Cambridge University Press
ISBN: 9780521466547
Category : Mathematics
Languages : en
Pages : 246
Book Description
Potential theory is the broad area of mathematical analysis encompassing such topics as harmonic and subharmonic functions.