Author: Arthur Pewsey
Publisher: OUP Oxford
ISBN: 0191650765
Category : Mathematics
Languages : en
Pages : 198
Book Description
Circular Statistics in R provides the most comprehensive guide to the analysis of circular data in over a decade. Circular data arise in many scientific contexts whether it be angular directions such as: observed compass directions of departure of radio-collared migratory birds from a release point; bond angles measured in different molecules; wind directions at different times of year at a wind farm; direction of stress-fractures in concrete bridge supports; longitudes of earthquake epicentres or seasonal and daily activity patterns, for example: data on the times of day at which animals are caught in a camera trap, or in 911 calls in New York, or in internet traffic; variation throughout the year in measles incidence, global energy requirements, TV viewing figures or injuries to athletes. The natural way of representing such data graphically is as points located around the circumference of a circle, hence their name. Importantly, circular variables are periodic in nature and the origin, or zero point, such as the beginning of a new year, is defined arbitrarily rather than necessarily emerging naturally from the system. This book will be of value both to those new to circular data analysis as well as those more familiar with the field. For beginners, the authors start by considering the fundamental graphical and numerical summaries used to represent circular data before introducing distributions that might be used to model them. They go on to discuss basic forms of inference such as point and interval estimation, as well as formal significance tests for hypotheses that will often be of scientific interest. When discussing model fitting, the authors advocate reduced reliance on the classical von Mises distribution; showcasing distributions that are capable of modelling features such as asymmetry and varying levels of kurtosis that are often exhibited by circular data. The use of likelihood-based and computer-intensive approaches to inference and modelling are stressed throughout the book. The R programming language is used to implement the methodology, particularly its "circular" package. Also provided are over 150 new functions for techniques not already covered within R. This concise but authoritative guide is accessible to the diverse range of scientists who have circular data to analyse and want to do so as easily and as effectively as possible.
Circular Statistics in R
Author: Arthur Pewsey
Publisher: OUP Oxford
ISBN: 0191650765
Category : Mathematics
Languages : en
Pages : 198
Book Description
Circular Statistics in R provides the most comprehensive guide to the analysis of circular data in over a decade. Circular data arise in many scientific contexts whether it be angular directions such as: observed compass directions of departure of radio-collared migratory birds from a release point; bond angles measured in different molecules; wind directions at different times of year at a wind farm; direction of stress-fractures in concrete bridge supports; longitudes of earthquake epicentres or seasonal and daily activity patterns, for example: data on the times of day at which animals are caught in a camera trap, or in 911 calls in New York, or in internet traffic; variation throughout the year in measles incidence, global energy requirements, TV viewing figures or injuries to athletes. The natural way of representing such data graphically is as points located around the circumference of a circle, hence their name. Importantly, circular variables are periodic in nature and the origin, or zero point, such as the beginning of a new year, is defined arbitrarily rather than necessarily emerging naturally from the system. This book will be of value both to those new to circular data analysis as well as those more familiar with the field. For beginners, the authors start by considering the fundamental graphical and numerical summaries used to represent circular data before introducing distributions that might be used to model them. They go on to discuss basic forms of inference such as point and interval estimation, as well as formal significance tests for hypotheses that will often be of scientific interest. When discussing model fitting, the authors advocate reduced reliance on the classical von Mises distribution; showcasing distributions that are capable of modelling features such as asymmetry and varying levels of kurtosis that are often exhibited by circular data. The use of likelihood-based and computer-intensive approaches to inference and modelling are stressed throughout the book. The R programming language is used to implement the methodology, particularly its "circular" package. Also provided are over 150 new functions for techniques not already covered within R. This concise but authoritative guide is accessible to the diverse range of scientists who have circular data to analyse and want to do so as easily and as effectively as possible.
Publisher: OUP Oxford
ISBN: 0191650765
Category : Mathematics
Languages : en
Pages : 198
Book Description
Circular Statistics in R provides the most comprehensive guide to the analysis of circular data in over a decade. Circular data arise in many scientific contexts whether it be angular directions such as: observed compass directions of departure of radio-collared migratory birds from a release point; bond angles measured in different molecules; wind directions at different times of year at a wind farm; direction of stress-fractures in concrete bridge supports; longitudes of earthquake epicentres or seasonal and daily activity patterns, for example: data on the times of day at which animals are caught in a camera trap, or in 911 calls in New York, or in internet traffic; variation throughout the year in measles incidence, global energy requirements, TV viewing figures or injuries to athletes. The natural way of representing such data graphically is as points located around the circumference of a circle, hence their name. Importantly, circular variables are periodic in nature and the origin, or zero point, such as the beginning of a new year, is defined arbitrarily rather than necessarily emerging naturally from the system. This book will be of value both to those new to circular data analysis as well as those more familiar with the field. For beginners, the authors start by considering the fundamental graphical and numerical summaries used to represent circular data before introducing distributions that might be used to model them. They go on to discuss basic forms of inference such as point and interval estimation, as well as formal significance tests for hypotheses that will often be of scientific interest. When discussing model fitting, the authors advocate reduced reliance on the classical von Mises distribution; showcasing distributions that are capable of modelling features such as asymmetry and varying levels of kurtosis that are often exhibited by circular data. The use of likelihood-based and computer-intensive approaches to inference and modelling are stressed throughout the book. The R programming language is used to implement the methodology, particularly its "circular" package. Also provided are over 150 new functions for techniques not already covered within R. This concise but authoritative guide is accessible to the diverse range of scientists who have circular data to analyse and want to do so as easily and as effectively as possible.
Circular Statistics in Biology
Author: Edward Batschelet
Publisher:
ISBN: 9780120810505
Category : Biometry
Languages : en
Pages : 371
Book Description
Statistical tools; Mathematical tools.
Publisher:
ISBN: 9780120810505
Category : Biometry
Languages : en
Pages : 371
Book Description
Statistical tools; Mathematical tools.
Topics in Circular Statistics
Author: S. Rao Jammalamadaka
Publisher: World Scientific
ISBN: 9810237782
Category : Mathematics
Languages : en
Pages : 336
Book Description
This research monograph on circular data analysis covers some recent advances in the field, besides providing a brief introduction to, and a review of, existing methods and models. The primary focus is on recent research into topics such as change-point problems, predictive distributions, circular correlation and regression, etc. An important feature of this work is the S-plus subroutines provided for analyzing actual data sets. Coupled with the discussion of new theoretical research, the book should benefit both the researcher and the practitioner.
Publisher: World Scientific
ISBN: 9810237782
Category : Mathematics
Languages : en
Pages : 336
Book Description
This research monograph on circular data analysis covers some recent advances in the field, besides providing a brief introduction to, and a review of, existing methods and models. The primary focus is on recent research into topics such as change-point problems, predictive distributions, circular correlation and regression, etc. An important feature of this work is the S-plus subroutines provided for analyzing actual data sets. Coupled with the discussion of new theoretical research, the book should benefit both the researcher and the practitioner.
Statistical Analysis of Circular Data
Author: N. I. Fisher
Publisher: Cambridge University Press
ISBN: 9780521568906
Category : Mathematics
Languages : en
Pages : 300
Book Description
A unified, up-to-date account of circular data-handling techniques, useful throughout science.
Publisher: Cambridge University Press
ISBN: 9780521568906
Category : Mathematics
Languages : en
Pages : 300
Book Description
A unified, up-to-date account of circular data-handling techniques, useful throughout science.
Phenological Research
Author: Irene L. Hudson
Publisher: Springer Science & Business Media
ISBN: 9048133351
Category : Science
Languages : en
Pages : 525
Book Description
As climate change continues to dominate the international environmental agenda, phenology – the study of the timing of recurring biological events – has received increasing research attention, leading to an emerging consensus that phenology can be viewed as an ‘early warning system’ for climate change impact. A multidisciplinary science involving many branches of ecology, geography and remote sensing, phenology to date has lacked a coherent methodological text. This new synthesis, including contributions from many of the world’s leading phenologists, therefore fills a critical gap in the current biological literature. Providing critiques of current methods, as well as detailing novel and emerging methodologies, the book, with its extensive suite of references, provides readers with an understanding of both the theoretical basis and the potential applications required to adopt and adapt new analytical and design methods. An invaluable source book for researchers and students in ecology and climate change science, the book also provides a useful reference for practitioners in a range of sectors, including human health, fisheries, forestry, agriculture and natural resource management.
Publisher: Springer Science & Business Media
ISBN: 9048133351
Category : Science
Languages : en
Pages : 525
Book Description
As climate change continues to dominate the international environmental agenda, phenology – the study of the timing of recurring biological events – has received increasing research attention, leading to an emerging consensus that phenology can be viewed as an ‘early warning system’ for climate change impact. A multidisciplinary science involving many branches of ecology, geography and remote sensing, phenology to date has lacked a coherent methodological text. This new synthesis, including contributions from many of the world’s leading phenologists, therefore fills a critical gap in the current biological literature. Providing critiques of current methods, as well as detailing novel and emerging methodologies, the book, with its extensive suite of references, provides readers with an understanding of both the theoretical basis and the potential applications required to adopt and adapt new analytical and design methods. An invaluable source book for researchers and students in ecology and climate change science, the book also provides a useful reference for practitioners in a range of sectors, including human health, fisheries, forestry, agriculture and natural resource management.
Geocomputation
Author: Chris Brunsdon
Publisher: SAGE
ISBN: 147390630X
Category : Social Science
Languages : en
Pages : 612
Book Description
Geocomputation is the use of software and computing power to solve complex spatial problems. It is gaining increasing importance in the era of the ‘big data’ revolution, of ‘smart cities’, of crowdsourced data, and of associated applications for viewing and managing data geographically - like Google Maps. This student focused book: Provides a selection of practical examples of geocomputational techniques and ‘hot topics’ written by world leading practitioners. Integrates supporting materials in each chapter, such as code and data, enabling readers to work through the examples themselves. Chapters provide highly applied and practical discussions of: Visualisation and exploratory spatial data analysis Space time modelling Spatial algorithms Spatial regression and statistics Enabling interactions through the use of neogeography All chapters are uniform in design and each includes an introduction, case studies, conclusions - drawing together the generalities of the introduction and specific findings from the case study application – and guidance for further reading. This accessible text has been specifically designed for those readers who are new to Geocomputation as an area of research, showing how complex real-world problems can be solved through the integration of technology, data, and geocomputational methods. This is the applied primer for Geocomputation in the social sciences.
Publisher: SAGE
ISBN: 147390630X
Category : Social Science
Languages : en
Pages : 612
Book Description
Geocomputation is the use of software and computing power to solve complex spatial problems. It is gaining increasing importance in the era of the ‘big data’ revolution, of ‘smart cities’, of crowdsourced data, and of associated applications for viewing and managing data geographically - like Google Maps. This student focused book: Provides a selection of practical examples of geocomputational techniques and ‘hot topics’ written by world leading practitioners. Integrates supporting materials in each chapter, such as code and data, enabling readers to work through the examples themselves. Chapters provide highly applied and practical discussions of: Visualisation and exploratory spatial data analysis Space time modelling Spatial algorithms Spatial regression and statistics Enabling interactions through the use of neogeography All chapters are uniform in design and each includes an introduction, case studies, conclusions - drawing together the generalities of the introduction and specific findings from the case study application – and guidance for further reading. This accessible text has been specifically designed for those readers who are new to Geocomputation as an area of research, showing how complex real-world problems can be solved through the integration of technology, data, and geocomputational methods. This is the applied primer for Geocomputation in the social sciences.
Introduction to Mathematics for Life Scientists
Author: E. Batschelet
Publisher: Springer Science & Business Media
ISBN: 364296270X
Category : Mathematics
Languages : en
Pages : 657
Book Description
A few decades ago mathematics played a modest role in life sciences. Today, however, a great variety of mathematical methods is applied in biology and medicine. Practically every mathematical procedure that is useful in physics, chemistry, engineering, and economics has also found an important application in the life sciences. The past and present training of life scientists does by no means reflect this development. However, the impact ofthe fast growing number of applications of mathematical methods makes it indispensable that students in the life sciences are offered a basic training in mathematics, both on the undergraduate and the graduate level. This book is primarily designed as a textbook for an introductory course. Life scientists may also use it as a reference to find mathematical methods suitable to their research problems. Moreover, the book should be appropriate for self-teaching. It will also be a guide for teachers. Numerous references are included to assist the reader in his search for the pertinent literature.
Publisher: Springer Science & Business Media
ISBN: 364296270X
Category : Mathematics
Languages : en
Pages : 657
Book Description
A few decades ago mathematics played a modest role in life sciences. Today, however, a great variety of mathematical methods is applied in biology and medicine. Practically every mathematical procedure that is useful in physics, chemistry, engineering, and economics has also found an important application in the life sciences. The past and present training of life scientists does by no means reflect this development. However, the impact ofthe fast growing number of applications of mathematical methods makes it indispensable that students in the life sciences are offered a basic training in mathematics, both on the undergraduate and the graduate level. This book is primarily designed as a textbook for an introductory course. Life scientists may also use it as a reference to find mathematical methods suitable to their research problems. Moreover, the book should be appropriate for self-teaching. It will also be a guide for teachers. Numerous references are included to assist the reader in his search for the pertinent literature.
Modern Directional Statistics
Author: Christophe Ley
Publisher: CRC Press
ISBN: 1351645781
Category : Computers
Languages : en
Pages : 233
Book Description
Modern Directional Statistics collects important advances in methodology and theory for directional statistics over the last two decades. It provides a detailed overview and analysis of recent results that can help both researchers and practitioners. Knowledge of multivariate statistics eases the reading but is not mandatory. The field of directional statistics has received a lot of attention over the past two decades, due to new demands from domains such as life sciences or machine learning, to the availability of massive data sets requiring adapted statistical techniques, and to technological advances. This book covers important progresses in distribution theory,high-dimensional statistics, kernel density estimation, efficient inference on directional supports, and computational and graphical methods. Christophe Ley is professor of mathematical statistics at Ghent University. His research interests include semi-parametrically efficient inference, flexible modeling, directional statistics and the study of asymptotic approximations via Stein’s Method. His achievements include the Marie-Jeanne Laurent-Duhamel prize of the Société Française de Statistique and an elected membership at the International Statistical Institute. He is associate editor for the journals Computational Statistics & Data Analysis and Econometrics and Statistics. Thomas Verdebout is professor of mathematical statistics at Université libre de Bruxelles (ULB). His main research interests are semi-parametric statistics, high- dimensional statistics, directional statistics and rank-based procedures. He has won an annual prize of the Belgian Academy of Sciences and is an elected member of the International Statistical Institute. He is associate editor for the journals Statistics and Probability Letters and Journal of Multivariate Analysis.
Publisher: CRC Press
ISBN: 1351645781
Category : Computers
Languages : en
Pages : 233
Book Description
Modern Directional Statistics collects important advances in methodology and theory for directional statistics over the last two decades. It provides a detailed overview and analysis of recent results that can help both researchers and practitioners. Knowledge of multivariate statistics eases the reading but is not mandatory. The field of directional statistics has received a lot of attention over the past two decades, due to new demands from domains such as life sciences or machine learning, to the availability of massive data sets requiring adapted statistical techniques, and to technological advances. This book covers important progresses in distribution theory,high-dimensional statistics, kernel density estimation, efficient inference on directional supports, and computational and graphical methods. Christophe Ley is professor of mathematical statistics at Ghent University. His research interests include semi-parametrically efficient inference, flexible modeling, directional statistics and the study of asymptotic approximations via Stein’s Method. His achievements include the Marie-Jeanne Laurent-Duhamel prize of the Société Française de Statistique and an elected membership at the International Statistical Institute. He is associate editor for the journals Computational Statistics & Data Analysis and Econometrics and Statistics. Thomas Verdebout is professor of mathematical statistics at Université libre de Bruxelles (ULB). His main research interests are semi-parametric statistics, high- dimensional statistics, directional statistics and rank-based procedures. He has won an annual prize of the Belgian Academy of Sciences and is an elected member of the International Statistical Institute. He is associate editor for the journals Statistics and Probability Letters and Journal of Multivariate Analysis.
Directional Statistics
Author: Kanti V. Mardia
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 472
Book Description
Observations which are directions, axes or rotations occur in many sciences, including astronomy, biology, earth sciences, image analysis, and medicine. To analyse such data it is necessary to use the techniques of directional statistics, in which the special structure of circles, spheres and rotation groups is taken into account. This book gives a unified and comprehensive account of directional statistics, presenting both the underlying statistical theory and the practical methodology. The book is divided into three parts. The first part concentrates on statistics on the circle. Topics covered include tests of uniformity, tests of goodness-of-fit, inference on von Mises distributions and non-parametric methods. The second part considers statistics on spheres of arbitrary dimension, and includes a detailed account of inference on the main distributions on spheres. Recent material on correlation, regression, time series, robust techniques, bootstrap methods, density estimation and curve fitting is presented. The third part considers statistics on more general sample spaces, in particular rotation groups, Stiefel manifolds, Grassmann manifolds and complex projective spaces. Shape analysis is considered from the perspective of directional statistics. This text will be invaluable not only to researchers in probability and statistics interested in the latest developments in directional statistics, but also to practitioners and researchers in many scientific fields, including astronomy, biology, computer vision, earth sciences and image analysis.
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 472
Book Description
Observations which are directions, axes or rotations occur in many sciences, including astronomy, biology, earth sciences, image analysis, and medicine. To analyse such data it is necessary to use the techniques of directional statistics, in which the special structure of circles, spheres and rotation groups is taken into account. This book gives a unified and comprehensive account of directional statistics, presenting both the underlying statistical theory and the practical methodology. The book is divided into three parts. The first part concentrates on statistics on the circle. Topics covered include tests of uniformity, tests of goodness-of-fit, inference on von Mises distributions and non-parametric methods. The second part considers statistics on spheres of arbitrary dimension, and includes a detailed account of inference on the main distributions on spheres. Recent material on correlation, regression, time series, robust techniques, bootstrap methods, density estimation and curve fitting is presented. The third part considers statistics on more general sample spaces, in particular rotation groups, Stiefel manifolds, Grassmann manifolds and complex projective spaces. Shape analysis is considered from the perspective of directional statistics. This text will be invaluable not only to researchers in probability and statistics interested in the latest developments in directional statistics, but also to practitioners and researchers in many scientific fields, including astronomy, biology, computer vision, earth sciences and image analysis.
Biostatistical Analysis
Author: Jerrold H. Zar
Publisher: Pearson
ISBN: 9780134995441
Category : Biometry
Languages : en
Pages : 960
Book Description
Zar's Biostatistical Analysis, Fifth Edition is the ideal textbook for graduate and undergraduate students seeking practical coverage of statistical analysis methods used by researchers to collect, summarize, analyze and draw conclusions from biological research. The latest edition of this best-selling textbook is both comprehensive and easy to read. It is suitable as an introduction for beginning students and as a comprehensive reference book for biological researchers and for advanced students. This book is appropriate for a one- or two-semester, junior or graduate-level course in biostatistics, biometry, quantitative biology, or statistics, and assumes a prerequisite of algebra.
Publisher: Pearson
ISBN: 9780134995441
Category : Biometry
Languages : en
Pages : 960
Book Description
Zar's Biostatistical Analysis, Fifth Edition is the ideal textbook for graduate and undergraduate students seeking practical coverage of statistical analysis methods used by researchers to collect, summarize, analyze and draw conclusions from biological research. The latest edition of this best-selling textbook is both comprehensive and easy to read. It is suitable as an introduction for beginning students and as a comprehensive reference book for biological researchers and for advanced students. This book is appropriate for a one- or two-semester, junior or graduate-level course in biostatistics, biometry, quantitative biology, or statistics, and assumes a prerequisite of algebra.