Chemoinformatics Approaches to Structure- and Ligand-Based Drug Design, Volume II

Chemoinformatics Approaches to Structure- and Ligand-Based Drug Design, Volume II PDF Author: Adriano D. Andricopulo
Publisher: Frontiers Media SA
ISBN: 2889766314
Category : Science
Languages : en
Pages : 325

Get Book Here

Book Description

Chemoinformatics Approaches to Structure- and Ligand-Based Drug Design, Volume II

Chemoinformatics Approaches to Structure- and Ligand-Based Drug Design, Volume II PDF Author: Adriano D. Andricopulo
Publisher: Frontiers Media SA
ISBN: 2889766314
Category : Science
Languages : en
Pages : 325

Get Book Here

Book Description


Chemoinformatics Approaches to Structure- and Ligand-Based Drug Design

Chemoinformatics Approaches to Structure- and Ligand-Based Drug Design PDF Author: Adriano D. Andricopulo
Publisher: Frontiers Media SA
ISBN: 2889457443
Category :
Languages : en
Pages : 415

Get Book Here

Book Description
Chemoinformatics is paramount to current drug discovery. Structure- and ligand-based drug design strategies have been used to uncover hidden patterns in large amounts of data, and to disclose the molecular aspects underlying ligand-receptor interactions. This Research Topic aims to share with a broad audience the most recent trends in the use of chemoinformatics in drug design. To that end, experts in all areas of drug discovery have made their knowledge available through a series of articles that report state-of-the-art approaches. Readers are provided with outstanding contributions focusing on a wide variety of topics which will be of great value to those interested in the many different and exciting facets of drug design.

Chemoinformatics Approaches to Virtual Screening

Chemoinformatics Approaches to Virtual Screening PDF Author: Alexandre Varnek
Publisher: Royal Society of Chemistry
ISBN: 0854041443
Category : Computers
Languages : en
Pages : 356

Get Book Here

Book Description
Chemoinformatics is broadly a scientific discipline encompassing the design, creation, organization, management, retrieval, analysis, dissemination, visualization and use of chemical information. It is distinct from other computational molecular modeling approaches in that it uses unique representations of chemical structures in the form of multiple chemical descriptors; has its own metrics for defining similarity and diversity of chemical compound libraries; and applies a wide array of statistical, data mining and machine learning techniques to very large collections of chemical compounds in order to establish robust relationships between chemical structure and its physical or biological properties. Chemoinformatics addresses a broad range of problems in chemistry and biology; however, the most commonly known applications of chemoinformatics approaches have been arguably in the area of drug discovery where chemoinformatics tools have played a central role in the analysis and interpretation of structure-property data collected by the means of modern high throughput screening. Early stages in modern drug discovery often involved screening small molecules for their effects on a selected protein target or a model of a biological pathway. In the past fifteen years, innovative technologies that enable rapid synthesis and high throughput screening of large libraries of compounds have been adopted in almost all major pharmaceutical and biotech companies. As a result, there has been a huge increase in the number of compounds available on a routine basis to quickly screen for novel drug candidates against new targets/pathways. In contrast, such technologies have rarely become available to the academic research community, thus limiting its ability to conduct large scale chemical genetics or chemical genomics research. However, the landscape of publicly available experimental data collection methods for chemoinformatics has changed dramatically in very recent years. The term "virtual screening" is commonly associated with methodologies that rely on the explicit knowledge of three-dimensional structure of the target protein to identify potential bioactive compounds. Traditional docking protocols and scoring functions rely on explicitly defined three dimensional coordinates and standard definitions of atom types of both receptors and ligands. Albeit reasonably accurate in many cases, conventional structure based virtual screening approaches are relatively computationally inefficient, which has precluded them from screening really large compound collections. Significant progress has been achieved over many years of research in developing many structure based virtual screening approaches. This book is the first monograph that summarizes innovative applications of efficient chemoinformatics approaches towards the goal of screening large chemical libraries. The focus on virtual screening expands chemoinformatics beyond its traditional boundaries as a synthetic and data-analytical area of research towards its recognition as a predictive and decision support scientific discipline. The approaches discussed by the contributors to the monograph rely on chemoinformatics concepts such as: -representation of molecules using multiple descriptors of chemical structures -advanced chemical similarity calculations in multidimensional descriptor spaces -the use of advanced machine learning and data mining approaches for building quantitative and predictive structure activity models -the use of chemoinformatics methodologies for the analysis of drug-likeness and property prediction -the emerging trend on combining chemoinformatics and bioinformatics concepts in structure based drug discovery The chapters of the book are organized in a logical flow that a typical chemoinformatics project would follow - from structure representation and comparison to data analysis and model building to applications of structure-property relationship models for hit identification and chemical library design. It opens with the overview of modern methods of compounds library design, followed by a chapter devoted to molecular similarity analysis. Four sections describe virtual screening based on the using of molecular fragments, 2D pharmacophores and 3D pharmacophores. Application of fuzzy pharmacophores for libraries design is the subject of the next chapter followed by a chapter dealing with QSAR studies based on local molecular parameters. Probabilistic approaches based on 2D descriptors in assessment of biological activities are also described with an overview of the modern methods and software for ADME prediction. The book ends with a chapter describing the new approach of coding the receptor binding sites and their respective ligands in multidimensional chemical descriptor space that affords an interesting and efficient alternative to traditional docking and screening techniques. Ligand-based approaches, which are in the focus of this work, are more computationally efficient compared to structure-based virtual screening and there are very few books related to modern developments in this field. The focus on extending the experiences accumulated in traditional areas of chemoinformatics research such as Quantitative Structure Activity Relationships (QSAR) or chemical similarity searching towards virtual screening make the theme of this monograph essential reading for researchers in the area of computer-aided drug discovery. However, due to its generic data-analytical focus there will be a growing application of chemoinformatics approaches in multiple areas of chemical and biological research such as synthesis planning, nanotechnology, proteomics, physical and analytical chemistry and chemical genomics.

Chemoinformatics and Bioinformatics in the Pharmaceutical Sciences

Chemoinformatics and Bioinformatics in the Pharmaceutical Sciences PDF Author: Navneet Sharma
Publisher: Academic Press
ISBN: 0128217472
Category : Medical
Languages : en
Pages : 514

Get Book Here

Book Description
Chemoinformatics and Bioinformatics in the Pharmaceutical Sciences brings together two very important fields in pharmaceutical sciences that have been mostly seen as diverging from each other: chemoinformatics and bioinformatics. As developing drugs is an expensive and lengthy process, technology can improve the cost, efficiency and speed at which new drugs can be discovered and tested. This book presents some of the growing advancements of technology in the field of drug development and how the computational approaches explained here can reduce the financial and experimental burden of the drug discovery process. This book will be useful to pharmaceutical science researchers and students who need basic knowledge of computational techniques relevant to their projects. Bioscientists, bioinformaticians, computational scientists, and other stakeholders from industry and academia will also find this book helpful. - Provides practical information on how to choose and use appropriate computational tools - Presents the wide, intersecting fields of chemo-bio-informatics in an easily-accessible format - Explores the fundamentals of the emerging field of chemoinformatics and bioinformatics

Applied Chemoinformatics

Applied Chemoinformatics PDF Author: Thomas Engel
Publisher: John Wiley & Sons
ISBN: 352734201X
Category : Science
Languages : en
Pages : 660

Get Book Here

Book Description
Edited by world-famous pioneers in chemoinformatics, this is a clearly structured and applications-oriented approach to the topic, providing up-to-date and focused information on the wide range of applications in this exciting field. The authors explain methods and software tools, such that the reader will not only learn the basics but also how to use the different software packages available. Experts describe applications in such different fields as structure-spectra correlations, virtual screening, prediction of active sites, library design, the prediction of the properties of chemicals, the development of new cosmetics products, quality control in food, the design of new materials with improved properties, toxicity modeling, assessment of the risk of chemicals, and the control of chemical processes. The book is aimed at advanced students as well as lectures but also at scientists that want to learn how chemoinformatics could assist them in solving their daily scientific tasks. Together with the corresponding textbook Chemoinformatics - Basic Concepts and Methods (ISBN 9783527331093) on the fundamentals of chemoinformatics readers will have a comprehensive overview of the field.

In Silico Medicinal Chemistry

In Silico Medicinal Chemistry PDF Author: Nathan Brown
Publisher: Royal Society of Chemistry
ISBN: 1782622608
Category : Science
Languages : en
Pages : 232

Get Book Here

Book Description
Covering computational tools in drug design using techniques from chemoinformatics, molecular modelling and computational chemistry, this book explores these methodologies and applications of in silico medicinal chemistry. The first part of the book covers molecular representation methods in computing in terms of chemical structure, together with guides on common structure file formats. The second part examines commonly used classes of molecular descriptors. The third part provides a guide to statistical learning methods using chemical structure data, covering topics such as similarity searching, clustering and diversity selection, virtual library design, ligand docking and de novo design. The final part of the book summarises the application of methods to the different stages of drug discovery, from target ID, through hit finding and hit-to-lead, to lead optimisation. This book is a practical introduction to the subject for researchers new to the fields of chemoinformatics, molecular modelling and computational chemistry.

Structure-Based Drug Design

Structure-Based Drug Design PDF Author: Pandi Veerapandian
Publisher: Routledge
ISBN: 1351413066
Category : Medical
Languages : en
Pages : 665

Get Book Here

Book Description
Introducing the most recent advances in crystallography, nuclear magnetic resonance, molecular modeling techniques, and computational combinatorial chemistry, this unique, interdisciplinary reference explains the application of three-dimensional structural information in the design of pharmaceutical drugs. Furnishing authoritative analyses by world-renowned experts, Structure-Based Drug Design discusses protein structure-based design in optimizing HIV protease inhibitors and details the biochemical, genetic, and clinical data on HIV-1 reverse transcriptase presents recent results on the high-resolution three-dimensional structure of the catalytic core domain of HIV-1 integrase as a foundation for divergent combination therapy focuses on structure-based design strategies for uncovering receptor antagonists to treat inflammatory diseases demonstrates a systematic approach to the design of inhibitory compounds in cancer treatment reviews current knowledge on the Interleukin-1 (IL-1) system and progress in the development of IL-1 modulators describes the influence of structure-based methods in designing capsid-binding inhibitors for relief of the common cold and much more!

Computer-Aided Drug Design

Computer-Aided Drug Design PDF Author: Dev Bukhsh Singh
Publisher: Springer Nature
ISBN: 9811568154
Category : Medical
Languages : en
Pages : 308

Get Book Here

Book Description
This book provides up-to-date information on bioinformatics tools for the discovery and development of new drug molecules. It discusses a range of computational applications, including three-dimensional modeling of protein structures, protein-ligand docking, and molecular dynamics simulation of protein-ligand complexes for identifying desirable drug candidates. It also explores computational approaches for identifying potential drug targets and for pharmacophore modeling. Moreover, it presents structure- and ligand-based drug design tools to optimize known drugs and guide the design of new molecules. The book also describes methods for identifying small-molecule binding pockets in proteins, and summarizes the databases used to explore the essential properties of drugs, drug-like small molecules and their targets. In addition, the book highlights various tools to predict the absorption, distribution, metabolism, excretion (ADME) and toxicity (T) of potential drug candidates. Lastly, it reviews in silico tools that can facilitate vaccine design and discusses their limitations.

Drug Design

Drug Design PDF Author: Kenneth M. Merz
Publisher: Cambridge University Press
ISBN: 0521887232
Category : Medical
Languages : en
Pages : 289

Get Book Here

Book Description
This book provides a complete snapshot of various experimental approaches to structure-based and ligand-based drug design and is illustrated with more than 200 images.

Target Discovery and Validation

Target Discovery and Validation PDF Author: Alleyn T. Plowright
Publisher: John Wiley & Sons
ISBN: 3527345299
Category : Medical
Languages : en
Pages : 396

Get Book Here

Book Description
The modern drug developers? guide for making informed choices among the diverse target identification methods Target Discovery and Validation: Methods and Strategies for Drug Discovery offers a hands-on review of the modern technologies for drug target identification and validation. With contributions from noted industry and academic experts, the book addresses the most recent chemical, biological, and computational methods. Additionally, the book highlights techologies that are applicable to ?difficult? targets and drugs directed at multiple targets, including chemoproteomics, activity-based protein profiling, pathway mapping, genome-wide association studies, and array-based profiling. Throughout, the authors highlight a range of diverse approaches, and target validation studies reveal how these methods can support academic and drug discovery scientists in their target discovery and validation research. This resource: -Offers a guide to identifying and validating targets, a key enabling technology without which no new drug development is possible -Presents the information needed for choosing the appropriate assay method from the ever-growing range of available options -Provides practical examples from recent drug development projects, e. g. in kinase inhibitor profiling Written for medicinal chemists, pharmaceutical professionals, biochemists, biotechnology professionals, and pharmaceutical chemists, Target Discovery and Validation explores the current methods for the identification and validation of drug targets in one comrpehensive volume. It also includes numerous practical examples.