Author: Yannick Le Tiec
Publisher: John Wiley & Sons
ISBN: 1118578120
Category : Technology & Engineering
Languages : en
Pages : 261
Book Description
Microelectronics is a complex world where many sciences need to collaborate to create nano-objects: we need expertise in electronics, microelectronics, physics, optics and mechanics also crossing into chemistry, electrochemistry, as well as biology, biochemistry and medicine. Chemistry is involved in many fields from materials, chemicals, gases, liquids or salts, the basics of reactions and equilibrium, to the optimized cleaning of surfaces and selective etching of specific layers. In addition, over recent decades, the size of the transistors has been drastically reduced while the functionality of circuits has increased. This book consists of five chapters covering the chemicals and sequences used in processing, from cleaning to etching, the role and impact of their purity, along with the materials used in “Front End Of the Line” which corresponds to the heart and performance of individual transistors, then moving on to the “Back End Of the Line” which is related to the interconnection of all the transistors. Finally, the need for specific functionalization also requires key knowledge on surface treatments and chemical management to allow new applications. Contents 1. Chemistry in the “Front End of the Line” (FEOL): Deposits, Gate Stacks, Epitaxy and Contacts, François Martin, Jean-Michel Hartmann, Véronique Carron and Yannick Le Tiec. 2. Chemistry in Interconnects, Vincent Jousseaume, Paul-Henri Haumesser, Carole Pernel, Jeffery Butterbaugh, Sylvain Maîtrejean and Didier Louis. 3. The Chemistry of Wet Surface Preparation: Cleaning, Etching and Drying, Yannick Le Tiec and Martin Knotter. 4. The Use and Management of Chemical Fluids in Microelectronics, Christiane Gottschalk, Kevin Mclaughlin, Julie Cren, Catherine Peyne and Patrick Valenti. 5. Surface Functionalization for Micro- and Nanosystems: Application to Biosensors, Antoine Hoang, Gilles Marchand, Guillaume Nonglaton, Isabelle Texier-Nogues and Francoise Vinet. About the Authors Yannick Le Tiec is a technical expert at CEA-Leti, Minatec since 2002. He is a CEA-Leti assignee at IBM, Albany (NY) to develop the advanced 14 nm CMOS node and the FDSOI technology. He held different technical positions from the advanced 300 mm SOI CMOS pilot line to different assignments within SOITEC for advanced wafer development and later within INES to optimize solar cell ramp-up and yield. He has been part of the ITRS Front End technical working group at ITRS since 2008.
Chemistry in Microelectronics
Author: Yannick Le Tiec
Publisher: John Wiley & Sons
ISBN: 1118578120
Category : Technology & Engineering
Languages : en
Pages : 261
Book Description
Microelectronics is a complex world where many sciences need to collaborate to create nano-objects: we need expertise in electronics, microelectronics, physics, optics and mechanics also crossing into chemistry, electrochemistry, as well as biology, biochemistry and medicine. Chemistry is involved in many fields from materials, chemicals, gases, liquids or salts, the basics of reactions and equilibrium, to the optimized cleaning of surfaces and selective etching of specific layers. In addition, over recent decades, the size of the transistors has been drastically reduced while the functionality of circuits has increased. This book consists of five chapters covering the chemicals and sequences used in processing, from cleaning to etching, the role and impact of their purity, along with the materials used in “Front End Of the Line” which corresponds to the heart and performance of individual transistors, then moving on to the “Back End Of the Line” which is related to the interconnection of all the transistors. Finally, the need for specific functionalization also requires key knowledge on surface treatments and chemical management to allow new applications. Contents 1. Chemistry in the “Front End of the Line” (FEOL): Deposits, Gate Stacks, Epitaxy and Contacts, François Martin, Jean-Michel Hartmann, Véronique Carron and Yannick Le Tiec. 2. Chemistry in Interconnects, Vincent Jousseaume, Paul-Henri Haumesser, Carole Pernel, Jeffery Butterbaugh, Sylvain Maîtrejean and Didier Louis. 3. The Chemistry of Wet Surface Preparation: Cleaning, Etching and Drying, Yannick Le Tiec and Martin Knotter. 4. The Use and Management of Chemical Fluids in Microelectronics, Christiane Gottschalk, Kevin Mclaughlin, Julie Cren, Catherine Peyne and Patrick Valenti. 5. Surface Functionalization for Micro- and Nanosystems: Application to Biosensors, Antoine Hoang, Gilles Marchand, Guillaume Nonglaton, Isabelle Texier-Nogues and Francoise Vinet. About the Authors Yannick Le Tiec is a technical expert at CEA-Leti, Minatec since 2002. He is a CEA-Leti assignee at IBM, Albany (NY) to develop the advanced 14 nm CMOS node and the FDSOI technology. He held different technical positions from the advanced 300 mm SOI CMOS pilot line to different assignments within SOITEC for advanced wafer development and later within INES to optimize solar cell ramp-up and yield. He has been part of the ITRS Front End technical working group at ITRS since 2008.
Publisher: John Wiley & Sons
ISBN: 1118578120
Category : Technology & Engineering
Languages : en
Pages : 261
Book Description
Microelectronics is a complex world where many sciences need to collaborate to create nano-objects: we need expertise in electronics, microelectronics, physics, optics and mechanics also crossing into chemistry, electrochemistry, as well as biology, biochemistry and medicine. Chemistry is involved in many fields from materials, chemicals, gases, liquids or salts, the basics of reactions and equilibrium, to the optimized cleaning of surfaces and selective etching of specific layers. In addition, over recent decades, the size of the transistors has been drastically reduced while the functionality of circuits has increased. This book consists of five chapters covering the chemicals and sequences used in processing, from cleaning to etching, the role and impact of their purity, along with the materials used in “Front End Of the Line” which corresponds to the heart and performance of individual transistors, then moving on to the “Back End Of the Line” which is related to the interconnection of all the transistors. Finally, the need for specific functionalization also requires key knowledge on surface treatments and chemical management to allow new applications. Contents 1. Chemistry in the “Front End of the Line” (FEOL): Deposits, Gate Stacks, Epitaxy and Contacts, François Martin, Jean-Michel Hartmann, Véronique Carron and Yannick Le Tiec. 2. Chemistry in Interconnects, Vincent Jousseaume, Paul-Henri Haumesser, Carole Pernel, Jeffery Butterbaugh, Sylvain Maîtrejean and Didier Louis. 3. The Chemistry of Wet Surface Preparation: Cleaning, Etching and Drying, Yannick Le Tiec and Martin Knotter. 4. The Use and Management of Chemical Fluids in Microelectronics, Christiane Gottschalk, Kevin Mclaughlin, Julie Cren, Catherine Peyne and Patrick Valenti. 5. Surface Functionalization for Micro- and Nanosystems: Application to Biosensors, Antoine Hoang, Gilles Marchand, Guillaume Nonglaton, Isabelle Texier-Nogues and Francoise Vinet. About the Authors Yannick Le Tiec is a technical expert at CEA-Leti, Minatec since 2002. He is a CEA-Leti assignee at IBM, Albany (NY) to develop the advanced 14 nm CMOS node and the FDSOI technology. He held different technical positions from the advanced 300 mm SOI CMOS pilot line to different assignments within SOITEC for advanced wafer development and later within INES to optimize solar cell ramp-up and yield. He has been part of the ITRS Front End technical working group at ITRS since 2008.
Microelectronics Processing
Author: Dennis W. Hess
Publisher:
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 572
Book Description
Although chemical engineering principles are at the heart of solid state process technology, until now no reference volume addressing this relationship was available. This is the first book of its kind to tie fundamental engineering concepts to solid state process technology. Discussing the basic concepts involved--liquid-phase epitaxy, physical and chemical vapor deposition, diffusion and oxidation in silicon, resists in microlithography, etc.--this volume will be particularly useful in chemical engineering courses. It offers a framework within which specialized courses in microelectronics processing can be organized. In addition, it serves as a valuable reference source for all industrial engineers working with the individual process steps covered.
Publisher:
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 572
Book Description
Although chemical engineering principles are at the heart of solid state process technology, until now no reference volume addressing this relationship was available. This is the first book of its kind to tie fundamental engineering concepts to solid state process technology. Discussing the basic concepts involved--liquid-phase epitaxy, physical and chemical vapor deposition, diffusion and oxidation in silicon, resists in microlithography, etc.--this volume will be particularly useful in chemical engineering courses. It offers a framework within which specialized courses in microelectronics processing can be organized. In addition, it serves as a valuable reference source for all industrial engineers working with the individual process steps covered.
Microsystem Technology in Chemistry and Life Sciences
Author: Andreas Manz
Publisher: Springer Science & Business Media
ISBN: 3540695443
Category : Science
Languages : en
Pages : 269
Book Description
"WHAT DOES NOT NEED TO BE BIG, WILL BE SMALL", a word by an engineer at a recent conference on chips technology. This sentence is particularly true for chemistry. Microfabrication technology emerged from microelectronics into areas like mechanics and now chemistry and biology. The engineering of micron and submicron sized features on the surface of silicon, glass and polymers opens a whole new world. Micromotors smaller than human hair have been fabricated and they work fine. It is the declared goal of the authors to bring these different worlds together in this volume. Authors have been carefully chosen to guarantee for the quality of the contents. An engineer, a chemist or a biologist will find new impulses from the various chapters in this book.
Publisher: Springer Science & Business Media
ISBN: 3540695443
Category : Science
Languages : en
Pages : 269
Book Description
"WHAT DOES NOT NEED TO BE BIG, WILL BE SMALL", a word by an engineer at a recent conference on chips technology. This sentence is particularly true for chemistry. Microfabrication technology emerged from microelectronics into areas like mechanics and now chemistry and biology. The engineering of micron and submicron sized features on the surface of silicon, glass and polymers opens a whole new world. Micromotors smaller than human hair have been fabricated and they work fine. It is the declared goal of the authors to bring these different worlds together in this volume. Authors have been carefully chosen to guarantee for the quality of the contents. An engineer, a chemist or a biologist will find new impulses from the various chapters in this book.
Chemical Mechanical Planarization of Microelectronic Materials
Author: Joseph M. Steigerwald
Publisher: John Wiley & Sons
ISBN: 3527617752
Category : Science
Languages : en
Pages : 337
Book Description
Chemical Mechanical Planarization (CMP) plays an important role in today's microelectronics industry. With its ability to achieve global planarization, its universality (material insensitivity), its applicability to multimaterial surfaces, and its relative cost-effectiveness, CMP is the ideal planarizing medium for the interlayered dielectrics and metal films used in silicon integrated circuit fabrication. But although the past decade has seen unprecedented research and development into CMP, there has been no single-source reference to this rapidly emerging technology-until now. Chemical Mechanical Planarization of Microelectronic Materials provides engineers and scientists working in the microelectronics industry with unified coverage of both the fundamental mechanisms and engineering applications of CMP. Authors Steigerwald, Murarka, and Gutmann-all leading CMP pioneers-provide a historical overview of CMP, explain the various chemical and mechanical concepts involved, describe CMP materials and processes, review the latest scientific data on CMP worldwide, and offer examples of its uses in the microelectronics industry. They provide detailed coverage of the CMP of various materials used in the making of microcircuitry: tungsten, aluminum, copper, polysilicon, and various dielectric materials, including polymers. The concluding chapter describes post-CMP cleaning techniques, and most chapters feature problem sets to assist readers in developing a more practical understanding of CMP. The only comprehensive reference to one of the fastest growing integrated circuit manufacturing technologies, Chemical Mechanical Planarization of Microelectronic Materials is an important resource for research scientists and engineers working in the microelectronics industry. An indispensable resource for scientists and engineers working in the microelectronics industry Chemical Mechanical Planarization of Microelectronic Materials is the only comprehensive single-source reference to one of the fastest growing integrated circuit manufacturing technologies. It provides engineers and scientists who work in the microelectronics industry with unified coverage of both the fundamental mechanisms and engineering applications of CMP, including: * The history of CMP * Chemical and mechanical underpinnings of CMP * CMP materials and processes * Applications of CMP in the microelectronics industry * The CMP of tungsten, aluminum, copper, polysilicon, and various dielectrics, including polymers used in integrated circuit fabrication * Post-CMP cleaning techniques * Chapter-end problem sets are also included to assist readers in developing a practical understanding of CMP.
Publisher: John Wiley & Sons
ISBN: 3527617752
Category : Science
Languages : en
Pages : 337
Book Description
Chemical Mechanical Planarization (CMP) plays an important role in today's microelectronics industry. With its ability to achieve global planarization, its universality (material insensitivity), its applicability to multimaterial surfaces, and its relative cost-effectiveness, CMP is the ideal planarizing medium for the interlayered dielectrics and metal films used in silicon integrated circuit fabrication. But although the past decade has seen unprecedented research and development into CMP, there has been no single-source reference to this rapidly emerging technology-until now. Chemical Mechanical Planarization of Microelectronic Materials provides engineers and scientists working in the microelectronics industry with unified coverage of both the fundamental mechanisms and engineering applications of CMP. Authors Steigerwald, Murarka, and Gutmann-all leading CMP pioneers-provide a historical overview of CMP, explain the various chemical and mechanical concepts involved, describe CMP materials and processes, review the latest scientific data on CMP worldwide, and offer examples of its uses in the microelectronics industry. They provide detailed coverage of the CMP of various materials used in the making of microcircuitry: tungsten, aluminum, copper, polysilicon, and various dielectric materials, including polymers. The concluding chapter describes post-CMP cleaning techniques, and most chapters feature problem sets to assist readers in developing a more practical understanding of CMP. The only comprehensive reference to one of the fastest growing integrated circuit manufacturing technologies, Chemical Mechanical Planarization of Microelectronic Materials is an important resource for research scientists and engineers working in the microelectronics industry. An indispensable resource for scientists and engineers working in the microelectronics industry Chemical Mechanical Planarization of Microelectronic Materials is the only comprehensive single-source reference to one of the fastest growing integrated circuit manufacturing technologies. It provides engineers and scientists who work in the microelectronics industry with unified coverage of both the fundamental mechanisms and engineering applications of CMP, including: * The history of CMP * Chemical and mechanical underpinnings of CMP * CMP materials and processes * Applications of CMP in the microelectronics industry * The CMP of tungsten, aluminum, copper, polysilicon, and various dielectrics, including polymers used in integrated circuit fabrication * Post-CMP cleaning techniques * Chapter-end problem sets are also included to assist readers in developing a practical understanding of CMP.
Chemical Bonding at Surfaces and Interfaces
Author: Anders Nilsson
Publisher: Elsevier
ISBN: 0080551912
Category : Science
Languages : en
Pages : 533
Book Description
Molecular surface science has made enormous progress in the past 30 years. The development can be characterized by a revolution in fundamental knowledge obtained from simple model systems and by an explosion in the number of experimental techniques. The last 10 years has seen an equally rapid development of quantum mechanical modeling of surface processes using Density Functional Theory (DFT). Chemical Bonding at Surfaces and Interfaces focuses on phenomena and concepts rather than on experimental or theoretical techniques. The aim is to provide the common basis for describing the interaction of atoms and molecules with surfaces and this to be used very broadly in science and technology. The book begins with an overview of structural information on surface adsorbates and discusses the structure of a number of important chemisorption systems. Chapter 2 describes in detail the chemical bond between atoms or molecules and a metal surface in the observed surface structures. A detailed description of experimental information on the dynamics of bond-formation and bond-breaking at surfaces make up Chapter 3. Followed by an in-depth analysis of aspects of heterogeneous catalysis based on the d-band model. In Chapter 5 adsorption and chemistry on the enormously important Si and Ge semiconductor surfaces are covered. In the remaining two Chapters the book moves on from solid-gas interfaces and looks at solid-liquid interface processes. In the final chapter an overview is given of the environmentally important chemical processes occurring on mineral and oxide surfaces in contact with water and electrolytes. - Gives examples of how modern theoretical DFT techniques can be used to design heterogeneous catalysts - This book suits the rapid introduction of methods and concepts from surface science into a broad range of scientific disciplines where the interaction between a solid and the surrounding gas or liquid phase is an essential component - Shows how insight into chemical bonding at surfaces can be applied to a range of scientific problems in heterogeneous catalysis, electrochemistry, environmental science and semiconductor processing - Provides both the fundamental perspective and an overview of chemical bonding in terms of structure, electronic structure and dynamics of bond rearrangements at surfaces
Publisher: Elsevier
ISBN: 0080551912
Category : Science
Languages : en
Pages : 533
Book Description
Molecular surface science has made enormous progress in the past 30 years. The development can be characterized by a revolution in fundamental knowledge obtained from simple model systems and by an explosion in the number of experimental techniques. The last 10 years has seen an equally rapid development of quantum mechanical modeling of surface processes using Density Functional Theory (DFT). Chemical Bonding at Surfaces and Interfaces focuses on phenomena and concepts rather than on experimental or theoretical techniques. The aim is to provide the common basis for describing the interaction of atoms and molecules with surfaces and this to be used very broadly in science and technology. The book begins with an overview of structural information on surface adsorbates and discusses the structure of a number of important chemisorption systems. Chapter 2 describes in detail the chemical bond between atoms or molecules and a metal surface in the observed surface structures. A detailed description of experimental information on the dynamics of bond-formation and bond-breaking at surfaces make up Chapter 3. Followed by an in-depth analysis of aspects of heterogeneous catalysis based on the d-band model. In Chapter 5 adsorption and chemistry on the enormously important Si and Ge semiconductor surfaces are covered. In the remaining two Chapters the book moves on from solid-gas interfaces and looks at solid-liquid interface processes. In the final chapter an overview is given of the environmentally important chemical processes occurring on mineral and oxide surfaces in contact with water and electrolytes. - Gives examples of how modern theoretical DFT techniques can be used to design heterogeneous catalysts - This book suits the rapid introduction of methods and concepts from surface science into a broad range of scientific disciplines where the interaction between a solid and the surrounding gas or liquid phase is an essential component - Shows how insight into chemical bonding at surfaces can be applied to a range of scientific problems in heterogeneous catalysis, electrochemistry, environmental science and semiconductor processing - Provides both the fundamental perspective and an overview of chemical bonding in terms of structure, electronic structure and dynamics of bond rearrangements at surfaces
Microelectronic Materials
Author: C.R.M. Grovenor
Publisher: CRC Press
ISBN: 9780852742709
Category : Science
Languages : en
Pages : 560
Book Description
This practical book shows how an understanding of structure, thermodynamics, and electrical properties can explain some of the choices of materials used in microelectronics, and can assist in the design of new materials for specific applications. It emphasizes the importance of the phase chemistry of semiconductor and metal systems for ensuring the long-term stability of new devices. The book discusses single-crystal and polycrystalline silicon, aluminium- and gold-based metallisation schemes, packaging semiconductor devices, failure analysis, and the suitability of various materials for optoelectronic devices and solar cells. It has been designed for senior undergraduates, graduates, and researchers in physics, electronic engineering, and materials science.
Publisher: CRC Press
ISBN: 9780852742709
Category : Science
Languages : en
Pages : 560
Book Description
This practical book shows how an understanding of structure, thermodynamics, and electrical properties can explain some of the choices of materials used in microelectronics, and can assist in the design of new materials for specific applications. It emphasizes the importance of the phase chemistry of semiconductor and metal systems for ensuring the long-term stability of new devices. The book discusses single-crystal and polycrystalline silicon, aluminium- and gold-based metallisation schemes, packaging semiconductor devices, failure analysis, and the suitability of various materials for optoelectronic devices and solar cells. It has been designed for senior undergraduates, graduates, and researchers in physics, electronic engineering, and materials science.
Infrared Characterization For Microelectronics
Author: Wai Shing Lau
Publisher: World Scientific
ISBN: 9814500070
Category : Technology & Engineering
Languages : en
Pages : 175
Book Description
Most of the books on infrared characterization are for applications in chemistry and no book has been dedicated to infrared characterization for microelectronics. The focus of the book will be on practical applications useful to the production line and to the research and development of microelectronics. The background knowledge and significance of doing a particular type of infrared measurement will be discussed in detail. The principal purpose of the book is to serve as a useful handbook for practising engineers and scientists in the field of microelectronics.
Publisher: World Scientific
ISBN: 9814500070
Category : Technology & Engineering
Languages : en
Pages : 175
Book Description
Most of the books on infrared characterization are for applications in chemistry and no book has been dedicated to infrared characterization for microelectronics. The focus of the book will be on practical applications useful to the production line and to the research and development of microelectronics. The background knowledge and significance of doing a particular type of infrared measurement will be discussed in detail. The principal purpose of the book is to serve as a useful handbook for practising engineers and scientists in the field of microelectronics.
Chemistry and Lithography
Author: Uzodinma Okoroanyanwu
Publisher: SPIE Press
ISBN: 9781118030028
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Chemistry and Lithography provides a comprehensive treatment of the chemical phenomena in lithography in a manner that is accessible to a wide readership. The book presents topics on the optical and charged particle physics practiced in lithography, with a broader view of how the marriage between chemistry and optics has made possible the print and electronic revolutions of the digital age. The related aspects of lithography are thematically presented to convey a unified view of the developments in the field over time, from the very first recorded reflections on the nature of matter to the latest developments at the frontiers of lithography science and technology. Part I presents several important chemical and physical principles involved in the invention and evolution of lithography. Part II covers the processes for the synthesis, manufacture, usage, and handling of lithographic chemicals and materials. Part III investigates several important chemical and physical principles involved in the practice of lithography. Chemistry and Lithography is a useful reference for anyone working in the semiconductor industry.
Publisher: SPIE Press
ISBN: 9781118030028
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Chemistry and Lithography provides a comprehensive treatment of the chemical phenomena in lithography in a manner that is accessible to a wide readership. The book presents topics on the optical and charged particle physics practiced in lithography, with a broader view of how the marriage between chemistry and optics has made possible the print and electronic revolutions of the digital age. The related aspects of lithography are thematically presented to convey a unified view of the developments in the field over time, from the very first recorded reflections on the nature of matter to the latest developments at the frontiers of lithography science and technology. Part I presents several important chemical and physical principles involved in the invention and evolution of lithography. Part II covers the processes for the synthesis, manufacture, usage, and handling of lithographic chemicals and materials. Part III investigates several important chemical and physical principles involved in the practice of lithography. Chemistry and Lithography is a useful reference for anyone working in the semiconductor industry.
Microelectronic Applications of Chemical Mechanical Planarization
Author: Yuzhuo Li
Publisher: John Wiley & Sons
ISBN: 0471719196
Category : Technology & Engineering
Languages : en
Pages : 764
Book Description
An authoritative, systematic, and comprehensive description of current CMP technology Chemical Mechanical Planarization (CMP) provides the greatest degree of planarization of any known technique. The current standard for integrated circuit (IC) planarization, CMP is playing an increasingly important role in other related applications such as microelectromechanical systems (MEMS) and computer hard drive manufacturing. This reference focuses on the chemical aspects of the technology and includes contributions from the foremost experts on specific applications. After a detailed overview of the fundamentals and basic science of CMP, Microelectronic Applications of Chemical Mechanical Planarization: * Provides in-depth coverage of a wide range of state-of-the-art technologies and applications * Presents information on new designs, capabilities, and emerging technologies, including topics like CMP with nanomaterials and 3D chips * Discusses different types of CMP tools, pads for IC CMP, modeling, and the applicability of tribometrology to various aspects of CMP * Covers nanotopography, CMP performance and defect profiles, CMP waste treatment, and the chemistry and colloidal properties of the slurries used in CMP * Provides a perspective on the opportunities and challenges of the next fifteen years Complete with case studies, this is a valuable, hands-on resource for professionals, including process engineers, equipment engineers, formulation chemists, IC manufacturers, and others. With systematic organization and questions at the end of each chapter to facilitate learning, it is an ideal introduction to CMP and an excellent text for students in advanced graduate courses that cover CMP or related semiconductor manufacturing processes.
Publisher: John Wiley & Sons
ISBN: 0471719196
Category : Technology & Engineering
Languages : en
Pages : 764
Book Description
An authoritative, systematic, and comprehensive description of current CMP technology Chemical Mechanical Planarization (CMP) provides the greatest degree of planarization of any known technique. The current standard for integrated circuit (IC) planarization, CMP is playing an increasingly important role in other related applications such as microelectromechanical systems (MEMS) and computer hard drive manufacturing. This reference focuses on the chemical aspects of the technology and includes contributions from the foremost experts on specific applications. After a detailed overview of the fundamentals and basic science of CMP, Microelectronic Applications of Chemical Mechanical Planarization: * Provides in-depth coverage of a wide range of state-of-the-art technologies and applications * Presents information on new designs, capabilities, and emerging technologies, including topics like CMP with nanomaterials and 3D chips * Discusses different types of CMP tools, pads for IC CMP, modeling, and the applicability of tribometrology to various aspects of CMP * Covers nanotopography, CMP performance and defect profiles, CMP waste treatment, and the chemistry and colloidal properties of the slurries used in CMP * Provides a perspective on the opportunities and challenges of the next fifteen years Complete with case studies, this is a valuable, hands-on resource for professionals, including process engineers, equipment engineers, formulation chemists, IC manufacturers, and others. With systematic organization and questions at the end of each chapter to facilitate learning, it is an ideal introduction to CMP and an excellent text for students in advanced graduate courses that cover CMP or related semiconductor manufacturing processes.
The Chemistry of Metal CVD
Author: Toivo T. Kodas
Publisher: John Wiley & Sons
ISBN: 3527615849
Category : Technology & Engineering
Languages : en
Pages : 562
Book Description
High purity, thin metal coatings have a variety of important commercial applications, for example, in the microelectronics industry, as catalysts, as protective and decorative coatings as well as in gas-diffusion barriers. This book offers detailed, up- to-date coverage of the chemistry behind the vapor deposition of different metals from organometallic precursors. In nine chapters, the CVD of metals including aluminum, tungsten, gold, silver, platinum, palladium, nickel, as well as copper from copper(I) and copper(II) compounds is covered. The synthesis and properties of the precursors, the growth process, morphology, quality and adhesion of the resulting films as well as laser- assisted, ion- assisted and plasma-assisted methods are discussed. Present applications and prospects for future developments are summarized. With ca. 1000 references and a glossary, this book is a unique source of in-depth information. It is indispensable for chemists, physicists, engineers and materials scientists working with metal- coating processes and technologies. From Reviews: 'I highly recommend this book to anyone interested in learning more about the chemistry of metal CVD.' J. Am Chem. Soc.
Publisher: John Wiley & Sons
ISBN: 3527615849
Category : Technology & Engineering
Languages : en
Pages : 562
Book Description
High purity, thin metal coatings have a variety of important commercial applications, for example, in the microelectronics industry, as catalysts, as protective and decorative coatings as well as in gas-diffusion barriers. This book offers detailed, up- to-date coverage of the chemistry behind the vapor deposition of different metals from organometallic precursors. In nine chapters, the CVD of metals including aluminum, tungsten, gold, silver, platinum, palladium, nickel, as well as copper from copper(I) and copper(II) compounds is covered. The synthesis and properties of the precursors, the growth process, morphology, quality and adhesion of the resulting films as well as laser- assisted, ion- assisted and plasma-assisted methods are discussed. Present applications and prospects for future developments are summarized. With ca. 1000 references and a glossary, this book is a unique source of in-depth information. It is indispensable for chemists, physicists, engineers and materials scientists working with metal- coating processes and technologies. From Reviews: 'I highly recommend this book to anyone interested in learning more about the chemistry of metal CVD.' J. Am Chem. Soc.