Author: Gabriel Navarro
Publisher: Cambridge University Press
ISBN: 0521595134
Category : Mathematics
Languages : en
Pages : 301
Book Description
This is a clear, accessible and up-to-date exposition of modular representation theory of finite groups from a character-theoretic viewpoint. After a short review of the necessary background material, the early chapters introduce Brauer characters and blocks and develop their basic properties. The next three chapters study and prove Brauer's first, second and third main theorems in turn. These results are then applied to prove a major application of finite groups, the Glauberman Z*-theorem. Later chapters examine Brauer characters in more detail. The relationship between blocks and normal subgroups is also explored and the modular characters and blocks in p-solvable groups are discussed. Finally, the character theory of groups with a Sylow p-subgroup of order p is studied. Each chapter concludes with a set of problems. The book is aimed at graduate students, with some previous knowledge of ordinary character theory, and researchers studying the representation theory of finite groups.
Characters and Blocks of Finite Groups
Author: Gabriel Navarro
Publisher: Cambridge University Press
ISBN: 0521595134
Category : Mathematics
Languages : en
Pages : 301
Book Description
This is a clear, accessible and up-to-date exposition of modular representation theory of finite groups from a character-theoretic viewpoint. After a short review of the necessary background material, the early chapters introduce Brauer characters and blocks and develop their basic properties. The next three chapters study and prove Brauer's first, second and third main theorems in turn. These results are then applied to prove a major application of finite groups, the Glauberman Z*-theorem. Later chapters examine Brauer characters in more detail. The relationship between blocks and normal subgroups is also explored and the modular characters and blocks in p-solvable groups are discussed. Finally, the character theory of groups with a Sylow p-subgroup of order p is studied. Each chapter concludes with a set of problems. The book is aimed at graduate students, with some previous knowledge of ordinary character theory, and researchers studying the representation theory of finite groups.
Publisher: Cambridge University Press
ISBN: 0521595134
Category : Mathematics
Languages : en
Pages : 301
Book Description
This is a clear, accessible and up-to-date exposition of modular representation theory of finite groups from a character-theoretic viewpoint. After a short review of the necessary background material, the early chapters introduce Brauer characters and blocks and develop their basic properties. The next three chapters study and prove Brauer's first, second and third main theorems in turn. These results are then applied to prove a major application of finite groups, the Glauberman Z*-theorem. Later chapters examine Brauer characters in more detail. The relationship between blocks and normal subgroups is also explored and the modular characters and blocks in p-solvable groups are discussed. Finally, the character theory of groups with a Sylow p-subgroup of order p is studied. Each chapter concludes with a set of problems. The book is aimed at graduate students, with some previous knowledge of ordinary character theory, and researchers studying the representation theory of finite groups.
Character Theory of Finite Groups
Author: I. Martin Isaacs
Publisher: American Mathematical Soc.
ISBN: 0821842293
Category : Mathematics
Languages : en
Pages : 322
Book Description
Character theory is a powerful tool for understanding finite groups. In particular, the theory has been a key ingredient in the classification of finite simple groups. Characters are also of interest in their own right, and their properties are closely related to properties of the structure of the underlying group. The book begins by developing the module theory of complex group algebras. After the module-theoretic foundations are laid in the first chapter, the focus is primarily on characters. This enhances the accessibility of the material for students, which was a major consideration in the writing. Also with students in mind, a large number of problems are included, many of them quite challenging. In addition to the development of the basic theory (using a cleaner notation than previously), a number of more specialized topics are covered with accessible presentations. These include projective representations, the basics of the Schur index, irreducible character degrees and group structure, complex linear groups, exceptional characters, and a fairly extensive introduction to blocks and Brauer characters. This is a corrected reprint of the original 1976 version, later reprinted by Dover. Since 1976 it has become the standard reference for character theory, appearing in the bibliography of almost every research paper in the subject. It is largely self-contained, requiring of the reader only the most basic facts of linear algebra, group theory, Galois theory and ring and module theory.
Publisher: American Mathematical Soc.
ISBN: 0821842293
Category : Mathematics
Languages : en
Pages : 322
Book Description
Character theory is a powerful tool for understanding finite groups. In particular, the theory has been a key ingredient in the classification of finite simple groups. Characters are also of interest in their own right, and their properties are closely related to properties of the structure of the underlying group. The book begins by developing the module theory of complex group algebras. After the module-theoretic foundations are laid in the first chapter, the focus is primarily on characters. This enhances the accessibility of the material for students, which was a major consideration in the writing. Also with students in mind, a large number of problems are included, many of them quite challenging. In addition to the development of the basic theory (using a cleaner notation than previously), a number of more specialized topics are covered with accessible presentations. These include projective representations, the basics of the Schur index, irreducible character degrees and group structure, complex linear groups, exceptional characters, and a fairly extensive introduction to blocks and Brauer characters. This is a corrected reprint of the original 1976 version, later reprinted by Dover. Since 1976 it has become the standard reference for character theory, appearing in the bibliography of almost every research paper in the subject. It is largely self-contained, requiring of the reader only the most basic facts of linear algebra, group theory, Galois theory and ring and module theory.
The Character Theory of Finite Groups of Lie Type
Author: Meinolf Geck
Publisher: Cambridge University Press
ISBN: 1108808905
Category : Mathematics
Languages : en
Pages : 406
Book Description
Through the fundamental work of Deligne and Lusztig in the 1970s, further developed mainly by Lusztig, the character theory of reductive groups over finite fields has grown into a rich and vast area of mathematics. It incorporates tools and methods from algebraic geometry, topology, combinatorics and computer algebra, and has since evolved substantially. With this book, the authors meet the need for a contemporary treatment, complementing in core areas the well-established books of Carter and Digne–Michel. Focusing on applications in finite group theory, the authors gather previously scattered results and allow the reader to get to grips with the large body of literature available on the subject, covering topics such as regular embeddings, the Jordan decomposition of characters, d-Harish–Chandra theory and Lusztig induction for unipotent characters. Requiring only a modest background in algebraic geometry, this useful reference is suitable for beginning graduate students as well as researchers.
Publisher: Cambridge University Press
ISBN: 1108808905
Category : Mathematics
Languages : en
Pages : 406
Book Description
Through the fundamental work of Deligne and Lusztig in the 1970s, further developed mainly by Lusztig, the character theory of reductive groups over finite fields has grown into a rich and vast area of mathematics. It incorporates tools and methods from algebraic geometry, topology, combinatorics and computer algebra, and has since evolved substantially. With this book, the authors meet the need for a contemporary treatment, complementing in core areas the well-established books of Carter and Digne–Michel. Focusing on applications in finite group theory, the authors gather previously scattered results and allow the reader to get to grips with the large body of literature available on the subject, covering topics such as regular embeddings, the Jordan decomposition of characters, d-Harish–Chandra theory and Lusztig induction for unipotent characters. Requiring only a modest background in algebraic geometry, this useful reference is suitable for beginning graduate students as well as researchers.
Representation Theory of Finite Groups: a Guidebook
Author: David A. Craven
Publisher: Springer Nature
ISBN: 3030217922
Category : Mathematics
Languages : en
Pages : 297
Book Description
This book provides an accessible introduction to the state of the art of representation theory of finite groups. Starting from a basic level that is summarized at the start, the book proceeds to cover topics of current research interest, including open problems and conjectures. The central themes of the book are block theory and module theory of group representations, which are comprehensively surveyed with a full bibliography. The individual chapters cover a range of topics within the subject, from blocks with cyclic defect groups to representations of symmetric groups. Assuming only modest background knowledge at the level of a first graduate course in algebra, this guidebook, intended for students taking first steps in the field, will also provide a reference for more experienced researchers. Although no proofs are included, end-of-chapter exercises make it suitable for student seminars.
Publisher: Springer Nature
ISBN: 3030217922
Category : Mathematics
Languages : en
Pages : 297
Book Description
This book provides an accessible introduction to the state of the art of representation theory of finite groups. Starting from a basic level that is summarized at the start, the book proceeds to cover topics of current research interest, including open problems and conjectures. The central themes of the book are block theory and module theory of group representations, which are comprehensively surveyed with a full bibliography. The individual chapters cover a range of topics within the subject, from blocks with cyclic defect groups to representations of symmetric groups. Assuming only modest background knowledge at the level of a first graduate course in algebra, this guidebook, intended for students taking first steps in the field, will also provide a reference for more experienced researchers. Although no proofs are included, end-of-chapter exercises make it suitable for student seminars.
A Course in Finite Group Representation Theory
Author: Peter Webb
Publisher: Cambridge University Press
ISBN: 1107162394
Category : Mathematics
Languages : en
Pages : 339
Book Description
This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.
Publisher: Cambridge University Press
ISBN: 1107162394
Category : Mathematics
Languages : en
Pages : 339
Book Description
This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.
Modular Representation Theory of Finite Groups
Author: Peter Schneider
Publisher: Springer Science & Business Media
ISBN: 1447148320
Category : Mathematics
Languages : en
Pages : 183
Book Description
Representation theory studies maps from groups into the general linear group of a finite-dimensional vector space. For finite groups the theory comes in two distinct flavours. In the 'semisimple case' (for example over the field of complex numbers) one can use character theory to completely understand the representations. This by far is not sufficient when the characteristic of the field divides the order of the group. Modular Representation Theory of finite Groups comprises this second situation. Many additional tools are needed for this case. To mention some, there is the systematic use of Grothendieck groups leading to the Cartan matrix and the decomposition matrix of the group as well as Green's direct analysis of indecomposable representations. There is also the strategy of writing the category of all representations as the direct product of certain subcategories, the so-called 'blocks' of the group. Brauer's work then establishes correspondences between the blocks of the original group and blocks of certain subgroups the philosophy being that one is thereby reduced to a simpler situation. In particular, one can measure how nonsemisimple a category a block is by the size and structure of its so-called 'defect group'. All these concepts are made explicit for the example of the special linear group of two-by-two matrices over a finite prime field. Although the presentation is strongly biased towards the module theoretic point of view an attempt is made to strike a certain balance by also showing the reader the group theoretic approach. In particular, in the case of defect groups a detailed proof of the equivalence of the two approaches is given. This book aims to familiarize students at the masters level with the basic results, tools, and techniques of a beautiful and important algebraic theory. Some basic algebra together with the semisimple case are assumed to be known, although all facts to be used are restated (without proofs) in the text. Otherwise the book is entirely self-contained.
Publisher: Springer Science & Business Media
ISBN: 1447148320
Category : Mathematics
Languages : en
Pages : 183
Book Description
Representation theory studies maps from groups into the general linear group of a finite-dimensional vector space. For finite groups the theory comes in two distinct flavours. In the 'semisimple case' (for example over the field of complex numbers) one can use character theory to completely understand the representations. This by far is not sufficient when the characteristic of the field divides the order of the group. Modular Representation Theory of finite Groups comprises this second situation. Many additional tools are needed for this case. To mention some, there is the systematic use of Grothendieck groups leading to the Cartan matrix and the decomposition matrix of the group as well as Green's direct analysis of indecomposable representations. There is also the strategy of writing the category of all representations as the direct product of certain subcategories, the so-called 'blocks' of the group. Brauer's work then establishes correspondences between the blocks of the original group and blocks of certain subgroups the philosophy being that one is thereby reduced to a simpler situation. In particular, one can measure how nonsemisimple a category a block is by the size and structure of its so-called 'defect group'. All these concepts are made explicit for the example of the special linear group of two-by-two matrices over a finite prime field. Although the presentation is strongly biased towards the module theoretic point of view an attempt is made to strike a certain balance by also showing the reader the group theoretic approach. In particular, in the case of defect groups a detailed proof of the equivalence of the two approaches is given. This book aims to familiarize students at the masters level with the basic results, tools, and techniques of a beautiful and important algebraic theory. Some basic algebra together with the semisimple case are assumed to be known, although all facts to be used are restated (without proofs) in the text. Otherwise the book is entirely self-contained.
Representations of Finite Groups
Author: Hirosi Nagao
Publisher: Elsevier
ISBN: 1483269930
Category : Mathematics
Languages : en
Pages : 443
Book Description
Representations of Finite Groups provides an account of the fundamentals of ordinary and modular representations. This book discusses the fundamental theory of complex representations of finite groups. Organized into five chapters, this book begins with an overview of the basic facts about rings and modules. This text then provides the theory of algebras, including theories of simple algebras, Frobenius algebras, crossed products, and Schur indices with representation-theoretic versions of them. Other chapters include a survey of the fundamental theory of modular representations, with emphasis on Brauer characters. This book discusses as well the module-theoretic representation theory due to Green and includes some topics such as Burry–Carlson's theorem and Scott modules. The final chapter deals with the fundamental results of Brauer on blocks and Fong's theory of covering, and includes some approaches to them. This book is a valuable resource for readers who are interested in the various approaches to the study of the representations of groups.
Publisher: Elsevier
ISBN: 1483269930
Category : Mathematics
Languages : en
Pages : 443
Book Description
Representations of Finite Groups provides an account of the fundamentals of ordinary and modular representations. This book discusses the fundamental theory of complex representations of finite groups. Organized into five chapters, this book begins with an overview of the basic facts about rings and modules. This text then provides the theory of algebras, including theories of simple algebras, Frobenius algebras, crossed products, and Schur indices with representation-theoretic versions of them. Other chapters include a survey of the fundamental theory of modular representations, with emphasis on Brauer characters. This book discusses as well the module-theoretic representation theory due to Green and includes some topics such as Burry–Carlson's theorem and Scott modules. The final chapter deals with the fundamental results of Brauer on blocks and Fong's theory of covering, and includes some approaches to them. This book is a valuable resource for readers who are interested in the various approaches to the study of the representations of groups.
Representations and Characters of Groups
Author: Gordon James
Publisher: Cambridge University Press
ISBN: 1139811053
Category : Mathematics
Languages : en
Pages : 436
Book Description
This book provides a modern introduction to the representation theory of finite groups. Now in its second edition, the authors have revised the text and added much new material. The theory is developed in terms of modules, since this is appropriate for more advanced work, but considerable emphasis is placed upon constructing characters. Included here are the character tables of all groups of order less than 32, and all simple groups of order less than 1000. Applications covered include Burnside's paqb theorem, the use of character theory in studying subgroup structure and permutation groups, and how to use representation theory to investigate molecular vibration. Each chapter features a variety of exercises, with full solutions provided at the end of the book. This will be ideal as a course text in representation theory, and in view of the applications, will be of interest to chemists and physicists as well as mathematicians.
Publisher: Cambridge University Press
ISBN: 1139811053
Category : Mathematics
Languages : en
Pages : 436
Book Description
This book provides a modern introduction to the representation theory of finite groups. Now in its second edition, the authors have revised the text and added much new material. The theory is developed in terms of modules, since this is appropriate for more advanced work, but considerable emphasis is placed upon constructing characters. Included here are the character tables of all groups of order less than 32, and all simple groups of order less than 1000. Applications covered include Burnside's paqb theorem, the use of character theory in studying subgroup structure and permutation groups, and how to use representation theory to investigate molecular vibration. Each chapter features a variety of exercises, with full solutions provided at the end of the book. This will be ideal as a course text in representation theory, and in view of the applications, will be of interest to chemists and physicists as well as mathematicians.
Representation Theory of Finite Reductive Groups
Author: Marc Cabanes
Publisher: Cambridge University Press
ISBN: 0521825172
Category : Mathematics
Languages : en
Pages : 457
Book Description
Publisher Description
Publisher: Cambridge University Press
ISBN: 0521825172
Category : Mathematics
Languages : en
Pages : 457
Book Description
Publisher Description
Representations of Finite Groups of Lie Type
Author: François Digne
Publisher: Cambridge University Press
ISBN: 1108481485
Category : Mathematics
Languages : en
Pages : 267
Book Description
An up-to-date and self-contained introduction based on a graduate course taught at the University of Paris.
Publisher: Cambridge University Press
ISBN: 1108481485
Category : Mathematics
Languages : en
Pages : 267
Book Description
An up-to-date and self-contained introduction based on a graduate course taught at the University of Paris.