Characterization of Selectively Degraded Poly(ethylene Terephthalate)

Characterization of Selectively Degraded Poly(ethylene Terephthalate) PDF Author: Dao Thanh Duong
Publisher:
ISBN:
Category :
Languages : en
Pages : 82

Get Book Here

Book Description

Characterization of Selectively Degraded Poly(ethylene Terephthalate)

Characterization of Selectively Degraded Poly(ethylene Terephthalate) PDF Author: Dao Thanh Duong
Publisher:
ISBN:
Category :
Languages : en
Pages : 82

Get Book Here

Book Description


Polyethylene Terephthalate

Polyethylene Terephthalate PDF Author: Naomi A. Barber
Publisher:
ISBN: 9781536119916
Category : Polyesters
Languages : en
Pages : 0

Get Book Here

Book Description
Polyethylene terephthalate (PET) is an aliphatic-aromatic and semicrystalline thermoplastic polyester of prime commercial and industrial importance. Namely, PET is a very important industrial polymer due to its excellent properties such as processability, chemical resistance, high tensile impact strength, high thermal stability and clarity. Chapter One summarises the synthesis and physicochemical properties of PET. In Chapter Two, the authors review the frequency-dependent parameters of the PET substrate, developments of the flexible RF electronics on PET substrate, and the challenges and potentials of RF applications using flexible electronics fabricated on PET films. Chapter Three presents a background of the current state of knowledge with respect to PET recycling.

Enzymatic Plastic Degradation

Enzymatic Plastic Degradation PDF Author:
Publisher: Academic Press
ISBN: 0128220139
Category : Science
Languages : en
Pages : 502

Get Book Here

Book Description
Enzymatic Plastic Degradation, Volume 648 in the Methods in Enzymology series, continues the legacy of this premier serial with chapters authored by leaders in the field. Chapters in this latest release include Evaluating plastic pollution and environmental degradation, Assessment methods for microplastic pollution in the oceans and fresh water, Exploring microbial consortia from various environments for plastic degradation, Characterization of filamentous fungi for attack on synthetic polymers via biological Fenton chemistry, Synthesis of radioactive-labeled nanoplastics for assaying the environmental (microbial) PS degradation, Exploring metagenome for plastic degrading enzymes, Cutinases from thermophilic bacteria (actinomycetes): from identification to functional and structural characterization, and much more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Methods in Enzymology series - Covers the latest research and technologies in enzymatic plastic degradation

Degradable Materials

Degradable Materials PDF Author: Sumner A. Barenberg
Publisher: CRC Press
ISBN: 135108822X
Category : Technology & Engineering
Languages : en
Pages : 634

Get Book Here

Book Description
This book addresses the fields of biodegradation, environmental degradation, and photochemical degradation. The purpose of the book is to establish guidelines for terminology, nomenclature, characterization techniques and methodology, mechanisms of degradation, standard reference materials, and issues and needs. This is the first scientific book of this nature based on the findings of the world's leading scientists (academic, industrial, and federal) in this field. Hard data is presented and soft data is identified under issues and needs. New areas covered are such topics as: biodegradation with in vivo applications, environmental degradation, including anaerobic, aerobic, characterization techniques and methodology, photochemical degradation, and secondary issues associated with degradation. This publication contains information vital to environmental scientists and engineers, biomaterials scientists, pharmaceutical technologists, and chemists.

Microbial Degradation of Plastics

Microbial Degradation of Plastics PDF Author: Ren Wei
Publisher: Frontiers Media SA
ISBN: 2889666050
Category : Science
Languages : en
Pages : 156

Get Book Here

Book Description


Characterization and Failure Analysis of Plastics

Characterization and Failure Analysis of Plastics PDF Author: ASM International
Publisher: ASM International
ISBN: 1615030735
Category : Technology & Engineering
Languages : en
Pages : 486

Get Book Here

Book Description
The selection and application of engineered materials is an integrated process that requires an understanding of the interaction between materials properties, manufacturing characteristics, design considerations, and the total life cycle of the product. This reference book on engineering plastics provides practical and comprehensive coverage on how the performance of plastics is characterized during design, property testing, and failure analysis. The fundamental structure and properties of plastics are reviewed for general reference, and detailed articles describe the important design factors, properties, and failure mechanisms of plastics. The effects of composition, processing, and structure are detailed in articles on the physical, chemical, thermal, and mechanical properties. Other articles cover failure mechanisms such as: crazing and fracture; impact loading; fatigue failure; wear failures, moisture related failure; organic chemical related failure; photolytic degradation; and microbial degradation. Characterization of plastics in failure analysis is described with additional articles on analysis of structure, surface analysis, and fractography.

Pyrolysis - GC/MS Data Book of Synthetic Polymers

Pyrolysis - GC/MS Data Book of Synthetic Polymers PDF Author: Shin Tsuge
Publisher: Elsevier
ISBN: 0444538933
Category : Science
Languages : en
Pages : 405

Get Book Here

Book Description
In this data book, both conventional Py-GC/MS where thermal energy alone is used to cause fragmentation of given polymeric materials and reactive Py-GC/MS in the presence of organic alkaline for condensation polymers are compiled. Before going into detailed presentation of the data, however, acquiring a firm grip on the proper understanding about the situation of Py-GC/MS would promote better utilization of the following pyrolysis data for various polymers samples. This book incorporates recent technological advances in analytical pyrolysis methods especially useful for the characterization of 163 typical synthetic polymers. The book briefly reviews the instrumentation available in advanced analytical pyrolysis, and offers guidance to perform effectually this technique combining with gas chromatography and mass spectrometry. Main contents are comprehensive sample pyrograms, thermograms, identification tables, and representative mass spectra (MS) of pyrolyzates for synthetic polymers. This edition also highlights thermally-assisted hydrolysis and methylation technique effectively applied to 33 basic condensation polymers. - Coverage of Py-GC/MS data of conventional pyrograms and thermograms of basic 163 kinds of synthetic polymers together with MS and retention index data for pyrolyzates, enabling a quick identification - Additional coverage of the pyrograms and their related data for 33 basic condensation polymers obtained by the thermally-assisted hydrolysis and methylation technique - All compiled data measured under the same experimental conditions for pyrolysis, gas chromatography and mass spectrometry to facilitate peak identification - Surveyable instant information on two facing pages dedicated to the whole data of a given polymer sample

Aquatic Ecosystems and Microbial Biofilms

Aquatic Ecosystems and Microbial Biofilms PDF Author: Siddhardha Busi
Publisher: CRC Press
ISBN: 1040133061
Category : Medical
Languages : en
Pages : 319

Get Book Here

Book Description
Aquatic Ecosystems and Microbial Biofilms: Significance, Dynamics, Prevention and Control provides a systematic introduction and review of state-of-the-art information on microbial biofilms in aquatic ecosystems and their control. The book is designed and developed to understand the microbial biofilms in aquatic ecosystems, their role, and the control strategies. The contents of the book are well discussed to get state-of-art knowledge on various topics such as the role of biofilms in marine ecosystems, microbial biofilms, and drinking water systems, biofilms in biofouling and biocorrosion, beneficial aspects of biofilms such as biogeochemical cycling, wastewater treatment, and in biodeterioration of organic materials. This book also provides comprehensive knowledge and in-depth scientific information on the role of biofilms and their contribution to antibiotic resistance, and also advanced technologies to understand biofilms such as metagenomics. The book offers comprehensive coverage of the most essential topics, including: Microbial biofilms in aquatic ecosystems. New horizons to understand the role of biofilms in biofouling and corrosion and their control measures. Beneficial role of aquatic biofilms such as in biogeochemical cycling,wastewater treatment, and biodeterioration of organic materials. Various strategies to collaborate interdisciplinary schemes worldwide to design and develop new methods for cleaner drinking water, and information on advanced techniques such as metagenomics to understand the diversity and functional role of aquatic biofilms. This book serves as a reference book for scientific investigators who would like to study biofilms in aquatic ecosystems, as well as researchers developing methodology in this field to study biofilm formation in aquatic ecosystems, their advantages and disadvantages, and control strategies.

Handbook for the Chemical Analysis of Plastic and Polymer Additives

Handbook for the Chemical Analysis of Plastic and Polymer Additives PDF Author: Michael Bolgar
Publisher: CRC Press
ISBN: 1439860750
Category : Science
Languages : en
Pages : 626

Get Book Here

Book Description
Polymers have undoubtedly changed the world through many products that improve our lives. However, additives used to modify the overall characteristics of these materials may not be fully disclosed or understood. These additives may present possible environmental and health hazards. It is important to monitor consumer products for these compounds u

Engineering Erwinia Aphidicola LJJL01

Engineering Erwinia Aphidicola LJJL01 PDF Author: Lakshika Dissanayake
Publisher:
ISBN:
Category : Catalysts
Languages : en
Pages : 386

Get Book Here

Book Description
Synthetic polymers are widely used in basic day to day activities given the wide range of uses associated with their advantageous material properties. Polyethylene terephthalate (PET) is a widely used synthetic polymer with annual production exceeding 73.39 million tons. Out of all the PET material generated, only 30% PET is recycled because current mechanical and chemical recycling methods are not techno-economically viable. This leads to the accumulation of a large amounts of PET waste in the environment causing significant damage to terrestrial and aquatic ecosystems. An alternative to recycling is PET upcycling approaches strategize of converting PET waste into high-value products. This development enables a circular material economy for PET. There are several reports of PET upcycling strategies that describe hybrid-chemo biological approaches. However, efficient whole-cell microbial catalysts capable of selectively degrading PET into its original monomers of ethylene glycol (EG) and terephthalic acid (TPA), and simultaneously upcycling these monomers into high-value compounds is yet to be developed. The selection of an appropriate host strain for plastic upcycling is vital in developing industrially applicable whole-cell biocatalysts. Use of non-model organisms in industrial applications has gained attention over the recent years. The work presented here illustrates comprehensive genomic and phenomic investigations suggesting that the metabolic pathways of the newly identified, Erwinia aphidicola LJJL01, is a promising candidate for upcycling PET-degraded substrates. First, we performed a comprehensive phenomic characterization of E. aphidicola LJJL01 including SEM imaging, pH, optimal temperature, toxicity tolerance, antibiotic tolerance, and fatty acid profile. The metabolic capability of the strain was shown using a substrates utilization assay that includes 29 substrates which comprise C-6 sugars, C-5 sugars, sugar alcohols, acids, alcohols. Secondly, we developed an efficient system for plasmid-based expression and secretion of heterologous proteins. We established synthetic microbiology tools, including CRISPR/Cas9-based genomic editing, to engineer the E. aphidicola LJJL01 strain. Thirdly, we demonstrated successful heterologous expression of PET hydrolyzing enzymes such as PETase and MHETase from Ideonella sakaiensis together with their secretion signal peptides in E. aphidicola LJJL01. We assessed the strain's PET hydrolyzing activity using Bis(2-Hydroxyethyl) terephthalate (BHET), an intermediate molecule of PET as the model substrate. The strain yields 0.88 ±0.10 mol of TPA/mol of BHET in minimal salt medium within 48 hours and outperforms the commonly used platform organisms such as Pseudomonas putida KT2440. We also successfully expressed the thermostable leaf branch compost cutinase (LCC) in E. aphidicola LJJL01. For the first time we were able to demonstrate the synergistic activity of LCC and MHETase enzymes at 30 °C. Since the developed strains didn't show considerable PET degradation at ambient conditions, we developed a novel process to hydrolyze amorphous and commercial grade PET using cell-free supernatant of secreted LCC enzyme at 72°C (the glass transition temperature of PET). Finally, we further engineered the aromatic catabolism of the strain to demonstrate the potential of upcycling PET-degraded TPA into high-value platform chemicals such as cis, cis-muconate. Taken together, we demonstrated E. aphidicola LJJL01, a promising microbial chassis to develop whole-cell biocatalysts to upcycle PET and enable circular material economy.