Author: Kevin Ewsuk
Publisher: John Wiley & Sons
ISBN: 047091713X
Category : Technology & Engineering
Languages : en
Pages : 403
Book Description
This proceedings volume features 59 peer-reviewed papers from ICCCI2009 on interface characterization and control technology, powder and composite processing, joining, the control of airborne particulates, new metallic glasses, and interface phenomena at high temperature. ICCCI2009 was supported by the Global COE Program “Center of Excellence for Advanced Structural and Functional Materials Design” lead by Professor Tomoyuki Kakeshita at Osaka University, the Project on Joining Technology for New Metallic Glasses and Inorganic Materials, the Institute of Materials Research (IMR) of Tohoku University, the Materials and Structures Laboratory (MSL) of the Tokyo Institute of Technology, Kobe Gakuin University, Hosokawa Powder Technology Foundation, the Japan JSPS 124th Committee, and the Joining and Welding Research Institute (JWRI) of Osaka University. Over 160 scientists and engineers from academia and industry from 18 different countries attended ICCCI2009 to see and discuss 140 invited and contributed presentations and posters on the state-of-the-art of interface characterization and control for particulate materials, joining, and nanotechnology.
Characterization and Control of Interfaces for High Quality Advanced Materials III
Author: Kevin Ewsuk
Publisher: John Wiley & Sons
ISBN: 047091713X
Category : Technology & Engineering
Languages : en
Pages : 403
Book Description
This proceedings volume features 59 peer-reviewed papers from ICCCI2009 on interface characterization and control technology, powder and composite processing, joining, the control of airborne particulates, new metallic glasses, and interface phenomena at high temperature. ICCCI2009 was supported by the Global COE Program “Center of Excellence for Advanced Structural and Functional Materials Design” lead by Professor Tomoyuki Kakeshita at Osaka University, the Project on Joining Technology for New Metallic Glasses and Inorganic Materials, the Institute of Materials Research (IMR) of Tohoku University, the Materials and Structures Laboratory (MSL) of the Tokyo Institute of Technology, Kobe Gakuin University, Hosokawa Powder Technology Foundation, the Japan JSPS 124th Committee, and the Joining and Welding Research Institute (JWRI) of Osaka University. Over 160 scientists and engineers from academia and industry from 18 different countries attended ICCCI2009 to see and discuss 140 invited and contributed presentations and posters on the state-of-the-art of interface characterization and control for particulate materials, joining, and nanotechnology.
Publisher: John Wiley & Sons
ISBN: 047091713X
Category : Technology & Engineering
Languages : en
Pages : 403
Book Description
This proceedings volume features 59 peer-reviewed papers from ICCCI2009 on interface characterization and control technology, powder and composite processing, joining, the control of airborne particulates, new metallic glasses, and interface phenomena at high temperature. ICCCI2009 was supported by the Global COE Program “Center of Excellence for Advanced Structural and Functional Materials Design” lead by Professor Tomoyuki Kakeshita at Osaka University, the Project on Joining Technology for New Metallic Glasses and Inorganic Materials, the Institute of Materials Research (IMR) of Tohoku University, the Materials and Structures Laboratory (MSL) of the Tokyo Institute of Technology, Kobe Gakuin University, Hosokawa Powder Technology Foundation, the Japan JSPS 124th Committee, and the Joining and Welding Research Institute (JWRI) of Osaka University. Over 160 scientists and engineers from academia and industry from 18 different countries attended ICCCI2009 to see and discuss 140 invited and contributed presentations and posters on the state-of-the-art of interface characterization and control for particulate materials, joining, and nanotechnology.
Characterization and Control of Interfaces for High Quality Advanced Materials
Author: Kevin Ewsuk
Publisher: John Wiley & Sons
ISBN: 1118406044
Category : Technology & Engineering
Languages : en
Pages : 486
Book Description
Interface characterization and control are critical in the design and manufacture of high quality advanced materials, particularly, for nanomaterials. This proceedings features papers on interface science and technology that provide a unique and state-of-the art perspective on interface characterization and control. Articles from scientists and engineers from 11 different countries address interface control, high temperature interfaces, nanoparticle design, nanotechnology, suspension control, novel processing, particulate materials, microstructure, and hot gas cleaning. This unique volume will serve as a valuable reference for scientists and engineers interested in interfaces, particulate materials, and nanotechnology. Proceedings of the International Conference on ICCCI 2003, Kurashiki, Japan, 2003; Ceramic Transactions, Volume 146.
Publisher: John Wiley & Sons
ISBN: 1118406044
Category : Technology & Engineering
Languages : en
Pages : 486
Book Description
Interface characterization and control are critical in the design and manufacture of high quality advanced materials, particularly, for nanomaterials. This proceedings features papers on interface science and technology that provide a unique and state-of-the art perspective on interface characterization and control. Articles from scientists and engineers from 11 different countries address interface control, high temperature interfaces, nanoparticle design, nanotechnology, suspension control, novel processing, particulate materials, microstructure, and hot gas cleaning. This unique volume will serve as a valuable reference for scientists and engineers interested in interfaces, particulate materials, and nanotechnology. Proceedings of the International Conference on ICCCI 2003, Kurashiki, Japan, 2003; Ceramic Transactions, Volume 146.
Transactions of JWRI.
Author: 大阪大学. 溶接工学研究所
Publisher:
ISBN:
Category : Welding
Languages : en
Pages : 760
Book Description
Publisher:
ISBN:
Category : Welding
Languages : en
Pages : 760
Book Description
Ceramic Integration and Joining Technologies
Author: Mrityunjay Singh
Publisher: John Wiley & Sons
ISBN: 0470391227
Category : Technology & Engineering
Languages : en
Pages : 830
Book Description
This book joins and integrates ceramics and ceramic-based materials in various sectors of technology. A major imperative is to extract scientific information on joining and integration response of real, as well as model, material systems currently in a developmental stage. This book envisions integration in its broadest sense as a fundamental enabling technology at multiple length scales that span the macro, millimeter, micrometer and nanometer ranges. Consequently, the book addresses integration issues in such diverse areas as space power and propulsion, thermoelectric power generation, solar energy, micro-electro-mechanical systems (MEMS), solid oxide fuel cells (SOFC), multi-chip modules, prosthetic devices, and implanted biosensors and stimulators. The engineering challenge of designing and manufacturing complex structural, functional, and smart components and devices for the above applications from smaller, geometrically simpler units requires innovative development of new integration technology and skillful adaptation of existing technology.
Publisher: John Wiley & Sons
ISBN: 0470391227
Category : Technology & Engineering
Languages : en
Pages : 830
Book Description
This book joins and integrates ceramics and ceramic-based materials in various sectors of technology. A major imperative is to extract scientific information on joining and integration response of real, as well as model, material systems currently in a developmental stage. This book envisions integration in its broadest sense as a fundamental enabling technology at multiple length scales that span the macro, millimeter, micrometer and nanometer ranges. Consequently, the book addresses integration issues in such diverse areas as space power and propulsion, thermoelectric power generation, solar energy, micro-electro-mechanical systems (MEMS), solid oxide fuel cells (SOFC), multi-chip modules, prosthetic devices, and implanted biosensors and stimulators. The engineering challenge of designing and manufacturing complex structural, functional, and smart components and devices for the above applications from smaller, geometrically simpler units requires innovative development of new integration technology and skillful adaptation of existing technology.
Additive Manufacturing
Author: T.S. Srivatsan
Publisher: CRC Press
ISBN: 1498714781
Category : Technology & Engineering
Languages : en
Pages : 448
Book Description
Get Ready for the Future of Additive ManufacturingAdditive Manufacturing: Innovations, Advances, and Applications explores the emerging field of additive manufacturing (AM)-the use of 3D printing to make prototype parts on demand. Often referred to as the third industrial revolution, AM offers many advantages over traditional manufacturing. This pr
Publisher: CRC Press
ISBN: 1498714781
Category : Technology & Engineering
Languages : en
Pages : 448
Book Description
Get Ready for the Future of Additive ManufacturingAdditive Manufacturing: Innovations, Advances, and Applications explores the emerging field of additive manufacturing (AM)-the use of 3D printing to make prototype parts on demand. Often referred to as the third industrial revolution, AM offers many advantages over traditional manufacturing. This pr
Advances in brazing
Author: T.-T. Ikeshoji
Publisher: Elsevier Inc. Chapters
ISBN: 0128088842
Category : Technology & Engineering
Languages : en
Pages : 36
Book Description
The brazing of carbon–carbon (C/C) composites and metals is a necessary manufacturing technique for some high-performance applications. In this chapter, the fundamentals of brazing C/C composites to metals are described including the wettability of the brazing filler on C/C composites and the coefficient of thermal expansion (CTE) difference between C/C composites and metals. Commercially available brazing fillers for the brazing of C/C composites and various metals are listed. The effect of fiber orientation on the joint strength of C/C composites and titanium is described. The manufacturing method for overcoming the mismatch in CTE between C/C composites and metals is also described.
Publisher: Elsevier Inc. Chapters
ISBN: 0128088842
Category : Technology & Engineering
Languages : en
Pages : 36
Book Description
The brazing of carbon–carbon (C/C) composites and metals is a necessary manufacturing technique for some high-performance applications. In this chapter, the fundamentals of brazing C/C composites to metals are described including the wettability of the brazing filler on C/C composites and the coefficient of thermal expansion (CTE) difference between C/C composites and metals. Commercially available brazing fillers for the brazing of C/C composites and various metals are listed. The effect of fiber orientation on the joint strength of C/C composites and titanium is described. The manufacturing method for overcoming the mismatch in CTE between C/C composites and metals is also described.
Advances in Brazing
Author: Dušan P Sekulić
Publisher: Elsevier
ISBN: 0857096508
Category : Technology & Engineering
Languages : en
Pages : 625
Book Description
Brazing processes offer enhanced control, adaptability and cost-efficiency in the joining of materials. Unsurprisingly, this has lead to great interest and investment in the area. Drawing on important research in the field, Advances in brazing provides a clear guide to the principles, materials, methods and key applications of brazing.Part one introduces the fundamentals of brazing, including molten metal wetting processes, strength and margins of safety of brazed joints, and modeling of associated physical phenomena. Part two goes on to consider specific materials, such as super alloys, filler metals for high temperature brazing, diamonds and cubic boron nitride, and varied ceramics and intermetallics. The brazing of carbon-carbon (C/C) composites to metals is also explored before applications of brazing and brazed materials are discussed in part three. Brazing of cutting materials, use of coating techniques, and metal-nonmetal brazing for electrical, packaging and structural applications are reviewed, along with fluxless brazing, the use of glasses and glass ceramics for high temperature applications and nickel-based filler metals for components in contact with drinking water.With its distinguished editor and international team of expert contributors, Advances in brazing is a technical guide for any professionals requiring an understanding of brazing processes, and offers a deeper understanding of the subject to researchers and engineers within the field of joining. - Reviews the advances of brazing processes in joining materials - Discusses the fundamentals of brazing and considers specific materials, including super alloys, filler metals, ceramics and intermetallics - Brazing of cutting materials and structural applications are also discussed
Publisher: Elsevier
ISBN: 0857096508
Category : Technology & Engineering
Languages : en
Pages : 625
Book Description
Brazing processes offer enhanced control, adaptability and cost-efficiency in the joining of materials. Unsurprisingly, this has lead to great interest and investment in the area. Drawing on important research in the field, Advances in brazing provides a clear guide to the principles, materials, methods and key applications of brazing.Part one introduces the fundamentals of brazing, including molten metal wetting processes, strength and margins of safety of brazed joints, and modeling of associated physical phenomena. Part two goes on to consider specific materials, such as super alloys, filler metals for high temperature brazing, diamonds and cubic boron nitride, and varied ceramics and intermetallics. The brazing of carbon-carbon (C/C) composites to metals is also explored before applications of brazing and brazed materials are discussed in part three. Brazing of cutting materials, use of coating techniques, and metal-nonmetal brazing for electrical, packaging and structural applications are reviewed, along with fluxless brazing, the use of glasses and glass ceramics for high temperature applications and nickel-based filler metals for components in contact with drinking water.With its distinguished editor and international team of expert contributors, Advances in brazing is a technical guide for any professionals requiring an understanding of brazing processes, and offers a deeper understanding of the subject to researchers and engineers within the field of joining. - Reviews the advances of brazing processes in joining materials - Discusses the fundamentals of brazing and considers specific materials, including super alloys, filler metals, ceramics and intermetallics - Brazing of cutting materials and structural applications are also discussed
Memoirs of the Institute of Scientific and Industrial Research, Osaka University
Author:
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 230
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 230
Book Description
Engineered Interfaces in Fiber Reinforced Composites
Author: Jang-Kyo Kim
Publisher: Elsevier
ISBN: 0080530974
Category : Technology & Engineering
Languages : en
Pages : 416
Book Description
The study and application of composite materials are a truly interdisciplinary endeavour that has been enriched by contributions from chemistry, physics, materials science, mechanics and manufacturing engineering. The understanding of the interface (or interphase) in composites is the central point of this interdisciplinary effort. From the early development of composite materials of various nature, the optimization of the interface has been of major importance. While there are many reference books available on composite materials, few of them deal specifically with the science and mechanics of the interface of fiber reinforced composites. Further, many recent advances devoted solely to research in composite interfaces have been scattered in a variety of published literature and have yet to be assembled in a readily accessible form. To this end this book is an attempt to bring together recent developments in the field, both from the materials science and mechanics perspective, in a single convenient volume.The central theme of the book is tailoring the interface properties to optimise the mechanical peformance and structural integrity of composites with enhanced strength/stiffness and fracture toughness (or specific fracture resistance). It deals mainly with interfaces in advanced composites made from high performance fibers, such as glass, carbon, aramid, ultra high modulus polyethylene and some inorganic (e.g. B/W, A12O3, SiC) fibers, and matrix materials encompassing polymers, metals/alloys and ceramics. The book is intended to provide a comprehensive treatment of composite interfaces in such a way that it should be of interest to materials scientists, technologists and practising engineers, as well as graduate students and their supervisors in advanced composites. We hope that this book will also serve as a valuable source of reference to all those involved in the design and research of composite interfaces.The book contains eight chapters of discussions on microstructure-property relationships with underlying fundamental mechanics principles. In Chapter 1, an introduction is given to the nature and definition of interfaces in fiber reinforced composites. Chapter 2 is devoted to the mechanisms of adhesion which are specific to each fiber-matrix system, and the physio-chemical characterization of the interface with regard to the origin of adhesion. The experimental techniques that have been developed to assess the fiber-matrix interface bond quality on a microscopic scale are presented in Chapter 3, along with the techniques of measuring interlaminar/intralaminar strengths and fracture toughness using bulk composite laminates. The applicability and limitations associated with loading geometry and interpretation of test data are compared. Chapter 4 presents comprehensive theoretical analyses based on shear-lag models of the single fiber composite tests, with particular interest being placed on the interface debond process and the nature of the fiber-matrix interfacial bonding. Chapter 5 is devoted to reviewing current techniques of fiber surface treatments which have been devised to improve the bond strength and the fiber-matrix compatibility/stability during the manufacturing processes of composites. The micro-failure mechanisms and their associated theories of fracture toughness of composites are discussed in Chapter 6. The roles of the interface and its effects on the mechanical performance of fiber composites are addressed from several viewpoints. Recent research efforts to augment the transverse and interlaminar fracture toughness by means of controlled interfaces are presented in Chapters 7 and 8.
Publisher: Elsevier
ISBN: 0080530974
Category : Technology & Engineering
Languages : en
Pages : 416
Book Description
The study and application of composite materials are a truly interdisciplinary endeavour that has been enriched by contributions from chemistry, physics, materials science, mechanics and manufacturing engineering. The understanding of the interface (or interphase) in composites is the central point of this interdisciplinary effort. From the early development of composite materials of various nature, the optimization of the interface has been of major importance. While there are many reference books available on composite materials, few of them deal specifically with the science and mechanics of the interface of fiber reinforced composites. Further, many recent advances devoted solely to research in composite interfaces have been scattered in a variety of published literature and have yet to be assembled in a readily accessible form. To this end this book is an attempt to bring together recent developments in the field, both from the materials science and mechanics perspective, in a single convenient volume.The central theme of the book is tailoring the interface properties to optimise the mechanical peformance and structural integrity of composites with enhanced strength/stiffness and fracture toughness (or specific fracture resistance). It deals mainly with interfaces in advanced composites made from high performance fibers, such as glass, carbon, aramid, ultra high modulus polyethylene and some inorganic (e.g. B/W, A12O3, SiC) fibers, and matrix materials encompassing polymers, metals/alloys and ceramics. The book is intended to provide a comprehensive treatment of composite interfaces in such a way that it should be of interest to materials scientists, technologists and practising engineers, as well as graduate students and their supervisors in advanced composites. We hope that this book will also serve as a valuable source of reference to all those involved in the design and research of composite interfaces.The book contains eight chapters of discussions on microstructure-property relationships with underlying fundamental mechanics principles. In Chapter 1, an introduction is given to the nature and definition of interfaces in fiber reinforced composites. Chapter 2 is devoted to the mechanisms of adhesion which are specific to each fiber-matrix system, and the physio-chemical characterization of the interface with regard to the origin of adhesion. The experimental techniques that have been developed to assess the fiber-matrix interface bond quality on a microscopic scale are presented in Chapter 3, along with the techniques of measuring interlaminar/intralaminar strengths and fracture toughness using bulk composite laminates. The applicability and limitations associated with loading geometry and interpretation of test data are compared. Chapter 4 presents comprehensive theoretical analyses based on shear-lag models of the single fiber composite tests, with particular interest being placed on the interface debond process and the nature of the fiber-matrix interfacial bonding. Chapter 5 is devoted to reviewing current techniques of fiber surface treatments which have been devised to improve the bond strength and the fiber-matrix compatibility/stability during the manufacturing processes of composites. The micro-failure mechanisms and their associated theories of fracture toughness of composites are discussed in Chapter 6. The roles of the interface and its effects on the mechanical performance of fiber composites are addressed from several viewpoints. Recent research efforts to augment the transverse and interlaminar fracture toughness by means of controlled interfaces are presented in Chapters 7 and 8.
Advanced Materials and Processing
Author: Federal Coordinating Council for Science, Engineering, and Technology. Committee on Industry and Technology
Publisher:
ISBN:
Category : Materials science
Languages : en
Pages : 228
Book Description
Publisher:
ISBN:
Category : Materials science
Languages : en
Pages : 228
Book Description