Author: Michael F. Barnsley
Publisher: Academic Press
ISBN: 1483269086
Category : Mathematics
Languages : en
Pages : 305
Book Description
Chaotic Dynamics and Fractals covers the proceedings of the 1985 Conference on Chaotic Dynamics, held at the Georgia Institute of Technology. This conference deals with the research area of chaos, dynamical systems, and fractal geometry. This text is organized into three parts encompassing 16 chapters. The first part describes the nature of chaos and fractals, the geometric tool for some strange attractors, and other complicated sets of data associated with chaotic systems. This part also considers the Henon-Hiles Hamiltonian with complex time, a Henon family of maps from C2 into itself, and the idea of turbulent maps in the course of presenting results on iteration of continuous maps from the unit interval to itself. The second part discusses complex analytic dynamics and associated fractal geometry, specifically the bursts into chaos, algorithms for obtaining geometrical and combinatorial information, and the parameter space for iterated cubic polynomials. This part also examines the differentiation of Julia sets with respects to a parameter in the associated rational map, permitting the formulation of Taylor series expansion for the sets. The third part highlights the applications of chaotic dynamics and fractals. This book will prove useful to mathematicians, physicists, and other scientists working in, or introducing themselves to, the field.
Chaotic Dynamics and Fractals
Author: Michael F. Barnsley
Publisher: Academic Press
ISBN: 1483269086
Category : Mathematics
Languages : en
Pages : 305
Book Description
Chaotic Dynamics and Fractals covers the proceedings of the 1985 Conference on Chaotic Dynamics, held at the Georgia Institute of Technology. This conference deals with the research area of chaos, dynamical systems, and fractal geometry. This text is organized into three parts encompassing 16 chapters. The first part describes the nature of chaos and fractals, the geometric tool for some strange attractors, and other complicated sets of data associated with chaotic systems. This part also considers the Henon-Hiles Hamiltonian with complex time, a Henon family of maps from C2 into itself, and the idea of turbulent maps in the course of presenting results on iteration of continuous maps from the unit interval to itself. The second part discusses complex analytic dynamics and associated fractal geometry, specifically the bursts into chaos, algorithms for obtaining geometrical and combinatorial information, and the parameter space for iterated cubic polynomials. This part also examines the differentiation of Julia sets with respects to a parameter in the associated rational map, permitting the formulation of Taylor series expansion for the sets. The third part highlights the applications of chaotic dynamics and fractals. This book will prove useful to mathematicians, physicists, and other scientists working in, or introducing themselves to, the field.
Publisher: Academic Press
ISBN: 1483269086
Category : Mathematics
Languages : en
Pages : 305
Book Description
Chaotic Dynamics and Fractals covers the proceedings of the 1985 Conference on Chaotic Dynamics, held at the Georgia Institute of Technology. This conference deals with the research area of chaos, dynamical systems, and fractal geometry. This text is organized into three parts encompassing 16 chapters. The first part describes the nature of chaos and fractals, the geometric tool for some strange attractors, and other complicated sets of data associated with chaotic systems. This part also considers the Henon-Hiles Hamiltonian with complex time, a Henon family of maps from C2 into itself, and the idea of turbulent maps in the course of presenting results on iteration of continuous maps from the unit interval to itself. The second part discusses complex analytic dynamics and associated fractal geometry, specifically the bursts into chaos, algorithms for obtaining geometrical and combinatorial information, and the parameter space for iterated cubic polynomials. This part also examines the differentiation of Julia sets with respects to a parameter in the associated rational map, permitting the formulation of Taylor series expansion for the sets. The third part highlights the applications of chaotic dynamics and fractals. This book will prove useful to mathematicians, physicists, and other scientists working in, or introducing themselves to, the field.
Dynamics with Chaos and Fractals
Author: Marat Akhmet
Publisher: Springer Nature
ISBN: 3030358542
Category : Mathematics
Languages : en
Pages : 233
Book Description
The book is concerned with the concepts of chaos and fractals, which are within the scopes of dynamical systems, geometry, measure theory, topology, and numerical analysis during the last several decades. It is revealed that a special kind of Poisson stable point, which we call an unpredictable point, gives rise to the existence of chaos in the quasi-minimal set. This is the first time in the literature that the description of chaos is initiated from a single motion. Chaos is now placed on the line of oscillations, and therefore, it is a subject of study in the framework of the theories of dynamical systems and differential equations, as in this book. The techniques introduced in the book make it possible to develop continuous and discrete dynamics which admit fractals as points of trajectories as well as orbits themselves. To provide strong arguments for the genericity of chaos in the real and abstract universe, the concept of abstract similarity is suggested.
Publisher: Springer Nature
ISBN: 3030358542
Category : Mathematics
Languages : en
Pages : 233
Book Description
The book is concerned with the concepts of chaos and fractals, which are within the scopes of dynamical systems, geometry, measure theory, topology, and numerical analysis during the last several decades. It is revealed that a special kind of Poisson stable point, which we call an unpredictable point, gives rise to the existence of chaos in the quasi-minimal set. This is the first time in the literature that the description of chaos is initiated from a single motion. Chaos is now placed on the line of oscillations, and therefore, it is a subject of study in the framework of the theories of dynamical systems and differential equations, as in this book. The techniques introduced in the book make it possible to develop continuous and discrete dynamics which admit fractals as points of trajectories as well as orbits themselves. To provide strong arguments for the genericity of chaos in the real and abstract universe, the concept of abstract similarity is suggested.
Chaotic Dynamics
Author: Geoffrey R. Goodson
Publisher: Cambridge University Press
ISBN: 1107112672
Category : Mathematics
Languages : en
Pages : 419
Book Description
This rigorous undergraduate introduction to dynamical systems is an accessible guide for mathematics students advancing from calculus.
Publisher: Cambridge University Press
ISBN: 1107112672
Category : Mathematics
Languages : en
Pages : 419
Book Description
This rigorous undergraduate introduction to dynamical systems is an accessible guide for mathematics students advancing from calculus.
Chaos, Fractals, and Noise
Author: Andrzej Lasota
Publisher: Springer Science & Business Media
ISBN: 146124286X
Category : Mathematics
Languages : en
Pages : 481
Book Description
The first edition of this book was originally published in 1985 under the ti tle "Probabilistic Properties of Deterministic Systems. " In the intervening years, interest in so-called "chaotic" systems has continued unabated but with a more thoughtful and sober eye toward applications, as befits a ma turing field. This interest in the serious usage of the concepts and techniques of nonlinear dynamics by applied scientists has probably been spurred more by the availability of inexpensive computers than by any other factor. Thus, computer experiments have been prominent, suggesting the wealth of phe nomena that may be resident in nonlinear systems. In particular, they allow one to observe the interdependence between the deterministic and probabilistic properties of these systems such as the existence of invariant measures and densities, statistical stability and periodicity, the influence of stochastic perturbations, the formation of attractors, and many others. The aim of the book, and especially of this second edition, is to present recent theoretical methods which allow one to study these effects. We have taken the opportunity in this second edition to not only correct the errors of the first edition, but also to add substantially new material in five sections and a new chapter.
Publisher: Springer Science & Business Media
ISBN: 146124286X
Category : Mathematics
Languages : en
Pages : 481
Book Description
The first edition of this book was originally published in 1985 under the ti tle "Probabilistic Properties of Deterministic Systems. " In the intervening years, interest in so-called "chaotic" systems has continued unabated but with a more thoughtful and sober eye toward applications, as befits a ma turing field. This interest in the serious usage of the concepts and techniques of nonlinear dynamics by applied scientists has probably been spurred more by the availability of inexpensive computers than by any other factor. Thus, computer experiments have been prominent, suggesting the wealth of phe nomena that may be resident in nonlinear systems. In particular, they allow one to observe the interdependence between the deterministic and probabilistic properties of these systems such as the existence of invariant measures and densities, statistical stability and periodicity, the influence of stochastic perturbations, the formation of attractors, and many others. The aim of the book, and especially of this second edition, is to present recent theoretical methods which allow one to study these effects. We have taken the opportunity in this second edition to not only correct the errors of the first edition, but also to add substantially new material in five sections and a new chapter.
Chaotic and Fractal Dynamics
Author: Francis C. Moon
Publisher: John Wiley & Sons
ISBN: 3527617515
Category : Science
Languages : en
Pages : 528
Book Description
A revision of a professional text on the phenomena of chaotic vibrations in fluids and solids. Major changes reflect the latest developments in this fast-moving topic, the introduction of problems to every chapter, additional mathematics and applications, more coverage of fractals, numerous computer and physical experiments. Contains eight pages of 4-color pictures.
Publisher: John Wiley & Sons
ISBN: 3527617515
Category : Science
Languages : en
Pages : 528
Book Description
A revision of a professional text on the phenomena of chaotic vibrations in fluids and solids. Major changes reflect the latest developments in this fast-moving topic, the introduction of problems to every chapter, additional mathematics and applications, more coverage of fractals, numerous computer and physical experiments. Contains eight pages of 4-color pictures.
Chaotic Vibrations
Author: Francis C. Moon
Publisher: Wiley-VCH
ISBN: 9780471679080
Category : Science
Languages : en
Pages : 0
Book Description
Translates new mathematical ideas in nonlinear dynamics and chaos into a language that engineers and scientists can understand, and gives specific examples and applications of chaotic dynamics in the physical world. Also describes how to perform both computer and physical experiments in chaotic dynamics. Topics cover Poincare maps, fractal dimensions and Lyapunov exponents, illustrating their use in specific physical examples. Includes an extensive guide to the literature, especially that relating to more mathematically oriented works; a glossary of chaotic dynamics terms; a list of computer experiments; and details for a demonstration experiment on chaotic vibrations.
Publisher: Wiley-VCH
ISBN: 9780471679080
Category : Science
Languages : en
Pages : 0
Book Description
Translates new mathematical ideas in nonlinear dynamics and chaos into a language that engineers and scientists can understand, and gives specific examples and applications of chaotic dynamics in the physical world. Also describes how to perform both computer and physical experiments in chaotic dynamics. Topics cover Poincare maps, fractal dimensions and Lyapunov exponents, illustrating their use in specific physical examples. Includes an extensive guide to the literature, especially that relating to more mathematically oriented works; a glossary of chaotic dynamics terms; a list of computer experiments; and details for a demonstration experiment on chaotic vibrations.
Chaos and Fractals
Author: Heinz-Otto Peitgen
Publisher: Springer Science & Business Media
ISBN: 1475747403
Category : Mathematics
Languages : en
Pages : 1013
Book Description
For almost ten years chaos and fractals have been enveloping many areas of mathematics and the natural sciences in their power, creativity and expanse. Reaching far beyond the traditional bounds of mathematics and science to the realms of popular culture, they have captured the attention and enthusiasm of a worldwide audience. The fourteen chapters of the book cover the central ideas and concepts, as well as many related topics including, the Mandelbrot Set, Julia Sets, Cellular Automata, L-Systems, Percolation and Strange Attractors, and each closes with the computer code for a central experiment. In the two appendices, Yuval Fisher discusses the details and ideas of fractal image compression, while Carl J.G. Evertsz and Benoit Mandelbrot introduce the foundations and implications of multifractals.
Publisher: Springer Science & Business Media
ISBN: 1475747403
Category : Mathematics
Languages : en
Pages : 1013
Book Description
For almost ten years chaos and fractals have been enveloping many areas of mathematics and the natural sciences in their power, creativity and expanse. Reaching far beyond the traditional bounds of mathematics and science to the realms of popular culture, they have captured the attention and enthusiasm of a worldwide audience. The fourteen chapters of the book cover the central ideas and concepts, as well as many related topics including, the Mandelbrot Set, Julia Sets, Cellular Automata, L-Systems, Percolation and Strange Attractors, and each closes with the computer code for a central experiment. In the two appendices, Yuval Fisher discusses the details and ideas of fractal image compression, while Carl J.G. Evertsz and Benoit Mandelbrot introduce the foundations and implications of multifractals.
Chaotic Dynamics
Author: Gregory L. Baker
Publisher: Cambridge University Press
ISBN: 9780521471060
Category : Science
Languages : en
Pages : 282
Book Description
The previous edition of this text was the first to provide a quantitative introduction to chaos and nonlinear dynamics at the undergraduate level. It was widely praised for the clarity of writing and for the unique and effective way in which the authors presented the basic ideas. These same qualities characterize this revised and expanded second edition. Interest in chaotic dynamics has grown explosively in recent years. Applications to practically every scientific field have had a far-reaching impact. As in the first edition, the authors present all the main features of chaotic dynamics using the damped, driven pendulum as the primary model. This second edition includes additional material on the analysis and characterization of chaotic data, and applications of chaos. This new edition of Chaotic Dynamics can be used as a text for courses on chaos for physics and engineering students at the second- and third-year level.
Publisher: Cambridge University Press
ISBN: 9780521471060
Category : Science
Languages : en
Pages : 282
Book Description
The previous edition of this text was the first to provide a quantitative introduction to chaos and nonlinear dynamics at the undergraduate level. It was widely praised for the clarity of writing and for the unique and effective way in which the authors presented the basic ideas. These same qualities characterize this revised and expanded second edition. Interest in chaotic dynamics has grown explosively in recent years. Applications to practically every scientific field have had a far-reaching impact. As in the first edition, the authors present all the main features of chaotic dynamics using the damped, driven pendulum as the primary model. This second edition includes additional material on the analysis and characterization of chaotic data, and applications of chaos. This new edition of Chaotic Dynamics can be used as a text for courses on chaos for physics and engineering students at the second- and third-year level.
Fractals and Chaos
Author: Paul S. Addison
Publisher: CRC Press
ISBN: 9780849384431
Category : Science
Languages : en
Pages : 276
Book Description
Fractals and Chaos: An Illustrated Course provides you with a practical, elementary introduction to fractal geometry and chaotic dynamics-subjects that have attracted immense interest throughout the scientific and engineering disciplines. The book may be used in part or as a whole to form an introductory course in either or both subject areas. A prominent feature of the book is the use of many illustrations to convey the concepts required for comprehension of the subject. In addition, plenty of problems are provided to test understanding. Advanced mathematics is avoided in order to provide a concise treatment and speed the reader through the subject areas. The book can be used as a text for undergraduate courses or for self-study.
Publisher: CRC Press
ISBN: 9780849384431
Category : Science
Languages : en
Pages : 276
Book Description
Fractals and Chaos: An Illustrated Course provides you with a practical, elementary introduction to fractal geometry and chaotic dynamics-subjects that have attracted immense interest throughout the scientific and engineering disciplines. The book may be used in part or as a whole to form an introductory course in either or both subject areas. A prominent feature of the book is the use of many illustrations to convey the concepts required for comprehension of the subject. In addition, plenty of problems are provided to test understanding. Advanced mathematics is avoided in order to provide a concise treatment and speed the reader through the subject areas. The book can be used as a text for undergraduate courses or for self-study.
Chaos, Bifurcations And Fractals Around Us: A Brief Introduction
Author: Wanda Szemplinska-stupnicka
Publisher: World Scientific
ISBN: 981448363X
Category : Technology & Engineering
Languages : en
Pages : 117
Book Description
During the last twenty years, a large number of books on nonlinear chaotic dynamics in deterministic dynamical systems have appeared. These academic tomes are intended for graduate students and require a deep knowledge of comprehensive, advanced mathematics. There is a need for a book that is accessible to general readers, a book that makes it possible to get a good deal of knowledge about complex chaotic phenomena in nonlinear oscillators without deep mathematical study.Chaos, Bifurcations and Fractals Around Us: A Brief Introduction fills that gap. It is a very short monograph that, owing to geometric interpretation complete with computer color graphics, makes it easy to understand even very complex advanced concepts of chaotic dynamics. This invaluable publication is also addressed to lecturers in engineering departments who want to include selected nonlinear problems in full time courses on general mechanics, vibrations or physics so as to encourage their students to conduct further study.
Publisher: World Scientific
ISBN: 981448363X
Category : Technology & Engineering
Languages : en
Pages : 117
Book Description
During the last twenty years, a large number of books on nonlinear chaotic dynamics in deterministic dynamical systems have appeared. These academic tomes are intended for graduate students and require a deep knowledge of comprehensive, advanced mathematics. There is a need for a book that is accessible to general readers, a book that makes it possible to get a good deal of knowledge about complex chaotic phenomena in nonlinear oscillators without deep mathematical study.Chaos, Bifurcations and Fractals Around Us: A Brief Introduction fills that gap. It is a very short monograph that, owing to geometric interpretation complete with computer color graphics, makes it easy to understand even very complex advanced concepts of chaotic dynamics. This invaluable publication is also addressed to lecturers in engineering departments who want to include selected nonlinear problems in full time courses on general mechanics, vibrations or physics so as to encourage their students to conduct further study.