Author: Hans Degn
Publisher: Springer Science & Business Media
ISBN: 1475796315
Category : Science
Languages : en
Pages : 319
Book Description
In recent years experimental and numerical studies have shown that chaos is a widespread phenomenon throughout the biological hierarchy ranging from simple enzyme reactions to ecosystems. Although a coherent picture of the fundamental mechanisms responsible for chaotic dynamics has started to appear it is not yet clear what the implications of such dynamics are for biological systems in general. In some systems it appears that chaotic dynamics are associated with a pathological condi tion. In other systems the pathological condition has regular periodic dynamics whilst the normal non-pathological condition has chaotic dyna mics. Since chaotic behaviour is so ubiquitous in nature and since the phenomenon raises some fundamental questions about its implications for biology it seemed timely to organize an interdisciplinary meeting at which leading scientists could meet to exchange ideas, to evaluate the current state of the field and to stipulate the guidelines along which future research should be directed. The present volume contains the contributions to the NATO Advanced Research Workshop on "Chaos in Biological Systems" held at Dyffryn House, St. Nicholas, Cardiff, U. K. , December 8-12, 1986. At this meeting 38 researchers with highly different backgrounds met to present their latest results through lectures and posters and to discuss the applica tions of non-linear techniques to problems of common interest. . In spite of their involvement in the study of chaotic dynamics for several years many of the participants met here for the first time.
Chaos in Biological Systems
Author: Hans Degn
Publisher: Springer Science & Business Media
ISBN: 1475796315
Category : Science
Languages : en
Pages : 319
Book Description
In recent years experimental and numerical studies have shown that chaos is a widespread phenomenon throughout the biological hierarchy ranging from simple enzyme reactions to ecosystems. Although a coherent picture of the fundamental mechanisms responsible for chaotic dynamics has started to appear it is not yet clear what the implications of such dynamics are for biological systems in general. In some systems it appears that chaotic dynamics are associated with a pathological condi tion. In other systems the pathological condition has regular periodic dynamics whilst the normal non-pathological condition has chaotic dyna mics. Since chaotic behaviour is so ubiquitous in nature and since the phenomenon raises some fundamental questions about its implications for biology it seemed timely to organize an interdisciplinary meeting at which leading scientists could meet to exchange ideas, to evaluate the current state of the field and to stipulate the guidelines along which future research should be directed. The present volume contains the contributions to the NATO Advanced Research Workshop on "Chaos in Biological Systems" held at Dyffryn House, St. Nicholas, Cardiff, U. K. , December 8-12, 1986. At this meeting 38 researchers with highly different backgrounds met to present their latest results through lectures and posters and to discuss the applica tions of non-linear techniques to problems of common interest. . In spite of their involvement in the study of chaotic dynamics for several years many of the participants met here for the first time.
Publisher: Springer Science & Business Media
ISBN: 1475796315
Category : Science
Languages : en
Pages : 319
Book Description
In recent years experimental and numerical studies have shown that chaos is a widespread phenomenon throughout the biological hierarchy ranging from simple enzyme reactions to ecosystems. Although a coherent picture of the fundamental mechanisms responsible for chaotic dynamics has started to appear it is not yet clear what the implications of such dynamics are for biological systems in general. In some systems it appears that chaotic dynamics are associated with a pathological condi tion. In other systems the pathological condition has regular periodic dynamics whilst the normal non-pathological condition has chaotic dyna mics. Since chaotic behaviour is so ubiquitous in nature and since the phenomenon raises some fundamental questions about its implications for biology it seemed timely to organize an interdisciplinary meeting at which leading scientists could meet to exchange ideas, to evaluate the current state of the field and to stipulate the guidelines along which future research should be directed. The present volume contains the contributions to the NATO Advanced Research Workshop on "Chaos in Biological Systems" held at Dyffryn House, St. Nicholas, Cardiff, U. K. , December 8-12, 1986. At this meeting 38 researchers with highly different backgrounds met to present their latest results through lectures and posters and to discuss the applica tions of non-linear techniques to problems of common interest. . In spite of their involvement in the study of chaotic dynamics for several years many of the participants met here for the first time.
Self-Organized Biological Dynamics and Nonlinear Control
Author: Jan Walleczek
Publisher: Cambridge University Press
ISBN: 1139427598
Category : Science
Languages : en
Pages : 444
Book Description
The growing impact of nonlinear science on biology and medicine is fundamentally changing our view of living organisms and disease processes. This book introduces the application to biomedicine of a broad range of interdisciplinary concepts from nonlinear dynamics, such as self-organization, complexity, coherence, stochastic resonance, fractals and chaos. It comprises 18 chapters written by leading figures in the field and covers experimental and theoretical research, as well as the emerging technological possibilities such as nonlinear control techniques for treating pathological biodynamics, including heart arrhythmias and epilepsy. This book will attract the interest of professionals and students from a wide range of disciplines, including physicists, chemists, biologists, sensory physiologists and medical researchers such as cardiologists, neurologists and biomedical engineers.
Publisher: Cambridge University Press
ISBN: 1139427598
Category : Science
Languages : en
Pages : 444
Book Description
The growing impact of nonlinear science on biology and medicine is fundamentally changing our view of living organisms and disease processes. This book introduces the application to biomedicine of a broad range of interdisciplinary concepts from nonlinear dynamics, such as self-organization, complexity, coherence, stochastic resonance, fractals and chaos. It comprises 18 chapters written by leading figures in the field and covers experimental and theoretical research, as well as the emerging technological possibilities such as nonlinear control techniques for treating pathological biodynamics, including heart arrhythmias and epilepsy. This book will attract the interest of professionals and students from a wide range of disciplines, including physicists, chemists, biologists, sensory physiologists and medical researchers such as cardiologists, neurologists and biomedical engineers.
Complex Systems: Chaos and Beyond
Author: Kunihiko Kaneko
Publisher: Springer Science & Business Media
ISBN: 3642568610
Category : Mathematics
Languages : en
Pages : 284
Book Description
This book, the first in a series on this subject, is the outcome of many years of efforts to give a new all-encompassing approach to complex systems in nature based on chaos theory. While maintaining a high level of rigor, the authors avoid an overly complicated mathematical apparatus, making the book accessible to a wider interdisciplinary readership.
Publisher: Springer Science & Business Media
ISBN: 3642568610
Category : Mathematics
Languages : en
Pages : 284
Book Description
This book, the first in a series on this subject, is the outcome of many years of efforts to give a new all-encompassing approach to complex systems in nature based on chaos theory. While maintaining a high level of rigor, the authors avoid an overly complicated mathematical apparatus, making the book accessible to a wider interdisciplinary readership.
Chaos and Dynamical Systems
Author: David P. Feldman
Publisher: Princeton University Press
ISBN: 0691161526
Category : Mathematics
Languages : en
Pages : 262
Book Description
Chaos and Dynamical Systems presents an accessible, clear introduction to dynamical systems and chaos theory, important and exciting areas that have shaped many scientific fields. While the rules governing dynamical systems are well-specified and simple, the behavior of many dynamical systems is remarkably complex. Of particular note, simple deterministic dynamical systems produce output that appears random and for which long-term prediction is impossible. Using little math beyond basic algebra, David Feldman gives readers a grounded, concrete, and concise overview. In initial chapters, Feldman introduces iterated functions and differential equations. He then surveys the key concepts and results to emerge from dynamical systems: chaos and the butterfly effect, deterministic randomness, bifurcations, universality, phase space, and strange attractors. Throughout, Feldman examines possible scientific implications of these phenomena for the study of complex systems, highlighting the relationships between simplicity and complexity, order and disorder. Filling the gap between popular accounts of dynamical systems and chaos and textbooks aimed at physicists and mathematicians, Chaos and Dynamical Systems will be highly useful not only to students at the undergraduate and advanced levels, but also to researchers in the natural, social, and biological sciences.
Publisher: Princeton University Press
ISBN: 0691161526
Category : Mathematics
Languages : en
Pages : 262
Book Description
Chaos and Dynamical Systems presents an accessible, clear introduction to dynamical systems and chaos theory, important and exciting areas that have shaped many scientific fields. While the rules governing dynamical systems are well-specified and simple, the behavior of many dynamical systems is remarkably complex. Of particular note, simple deterministic dynamical systems produce output that appears random and for which long-term prediction is impossible. Using little math beyond basic algebra, David Feldman gives readers a grounded, concrete, and concise overview. In initial chapters, Feldman introduces iterated functions and differential equations. He then surveys the key concepts and results to emerge from dynamical systems: chaos and the butterfly effect, deterministic randomness, bifurcations, universality, phase space, and strange attractors. Throughout, Feldman examines possible scientific implications of these phenomena for the study of complex systems, highlighting the relationships between simplicity and complexity, order and disorder. Filling the gap between popular accounts of dynamical systems and chaos and textbooks aimed at physicists and mathematicians, Chaos and Dynamical Systems will be highly useful not only to students at the undergraduate and advanced levels, but also to researchers in the natural, social, and biological sciences.
Chaos in Ecology
Author: J. M. Cushing
Publisher: Elsevier
ISBN: 9780121988760
Category : Mathematics
Languages : en
Pages : 248
Book Description
Chaos in Ecology is a convincing demonstration of chaos in a biological population. The book synthesizes an ecologically focused interdisciplinary blend of non-linear dynamics theory, statistics, and experimentation yielding results of uncommon clarity and rigor. Topics include fundamental issues that are of general and widespread importance to population biology and ecology. Detailed descriptions are included of the mathematical, statistical, and experimental steps they used to explore nonlinear dynamics in ecology. Beginning with a brief overview of chaos theory and its implications for ecology. The book continues by deriving and rigorously testing a mathematical model that is closely wedded to biological mechanisms of their research organism. Therefrom were generated a variety of predictions that are fundamental to chaos theory and experiments were designed and analyzed to test those predictions. Discussion of patterns in chaos and how they can be investigated using real data follows and book ends with a discussion of the salient lessons learned from this research program Book jacket.
Publisher: Elsevier
ISBN: 9780121988760
Category : Mathematics
Languages : en
Pages : 248
Book Description
Chaos in Ecology is a convincing demonstration of chaos in a biological population. The book synthesizes an ecologically focused interdisciplinary blend of non-linear dynamics theory, statistics, and experimentation yielding results of uncommon clarity and rigor. Topics include fundamental issues that are of general and widespread importance to population biology and ecology. Detailed descriptions are included of the mathematical, statistical, and experimental steps they used to explore nonlinear dynamics in ecology. Beginning with a brief overview of chaos theory and its implications for ecology. The book continues by deriving and rigorously testing a mathematical model that is closely wedded to biological mechanisms of their research organism. Therefrom were generated a variety of predictions that are fundamental to chaos theory and experiments were designed and analyzed to test those predictions. Discussion of patterns in chaos and how they can be investigated using real data follows and book ends with a discussion of the salient lessons learned from this research program Book jacket.
Genomic Control Process
Author: Isabelle S. Peter
Publisher: Academic Press
ISBN: 0124047467
Category : Science
Languages : en
Pages : 461
Book Description
Genomic Control Process explores the biological phenomena around genomic regulatory systems that control and shape animal development processes, and which determine the nature of evolutionary processes that affect body plan. Unifying and simplifying the descriptions of development and evolution by focusing on the causality in these processes, it provides a comprehensive method of considering genomic control across diverse biological processes. This book is essential for graduate researchers in genomics, systems biology and molecular biology seeking to understand deep biological processes which regulate the structure of animals during development. - Covers a vast area of current biological research to produce a genome oriented regulatory bioscience of animal life - Places gene regulation, embryonic and postembryonic development, and evolution of the body plan in a unified conceptual framework - Provides the conceptual keys to interpret a broad developmental and evolutionary landscape with precise experimental illustrations drawn from contemporary literature - Includes a range of material, from developmental phenomenology to quantitative and logic models, from phylogenetics to the molecular biology of gene regulation, from animal models of all kinds to evidence of every relevant type - Demonstrates the causal power of system-level understanding of genomic control process - Conceptually organizes a constellation of complex and diverse biological phenomena - Investigates fundamental developmental control system logic in diverse circumstances and expresses these in conceptual models - Explores mechanistic evolutionary processes, illuminating the evolutionary consequences of developmental control systems as they are encoded in the genome
Publisher: Academic Press
ISBN: 0124047467
Category : Science
Languages : en
Pages : 461
Book Description
Genomic Control Process explores the biological phenomena around genomic regulatory systems that control and shape animal development processes, and which determine the nature of evolutionary processes that affect body plan. Unifying and simplifying the descriptions of development and evolution by focusing on the causality in these processes, it provides a comprehensive method of considering genomic control across diverse biological processes. This book is essential for graduate researchers in genomics, systems biology and molecular biology seeking to understand deep biological processes which regulate the structure of animals during development. - Covers a vast area of current biological research to produce a genome oriented regulatory bioscience of animal life - Places gene regulation, embryonic and postembryonic development, and evolution of the body plan in a unified conceptual framework - Provides the conceptual keys to interpret a broad developmental and evolutionary landscape with precise experimental illustrations drawn from contemporary literature - Includes a range of material, from developmental phenomenology to quantitative and logic models, from phylogenetics to the molecular biology of gene regulation, from animal models of all kinds to evidence of every relevant type - Demonstrates the causal power of system-level understanding of genomic control process - Conceptually organizes a constellation of complex and diverse biological phenomena - Investigates fundamental developmental control system logic in diverse circumstances and expresses these in conceptual models - Explores mechanistic evolutionary processes, illuminating the evolutionary consequences of developmental control systems as they are encoded in the genome
Chaotic Synchronization
Author: Erik Mosekilde
Publisher: World Scientific
ISBN: 9789810247898
Category : Science
Languages : en
Pages : 444
Book Description
A guide to the fascinating new concept of chaotic sychronization.
Publisher: World Scientific
ISBN: 9789810247898
Category : Science
Languages : en
Pages : 444
Book Description
A guide to the fascinating new concept of chaotic sychronization.
Dynamics of Biological Systems
Author: Michael Small
Publisher: CRC Press
ISBN: 1439853363
Category : Mathematics
Languages : en
Pages : 286
Book Description
From the spontaneous rapid firing of cortical neurons to the spatial diffusion of disease epidemics, biological systems exhibit rich dynamic behaviour over a vast range of time and space scales. Unifying many of these diverse phenomena, Dynamics of Biological Systems provides the computational and mathematical platform from which to understand the underlying processes of the phenomena. Through an extensive tour of various biological systems, the text introduces computational methods for simulating spatial diffusion processes in excitable media, such as the human heart, as well as mathematical tools for dealing with systems of nonlinear ordinary and partial differential equations, such as neuronal activation and disease diffusion. The mathematical models and computer simulations offer insight into the dynamics of temporal and spatial biological systems, including cardiac pacemakers, artificial electrical defibrillation, pandemics, pattern formation, flocking behaviour, the interaction of autonomous agents, and hierarchical and structured network topologies. Tools from complex systems and complex networks are also presented for dealing with real phenomenological systems. With exercises and projects in each chapter, this classroom-tested text shows students how to apply a variety of mathematical and computational techniques to model and analyze the temporal and spatial phenomena of biological systems. MATLAB® implementations of algorithms and case studies are available on the author’s website.
Publisher: CRC Press
ISBN: 1439853363
Category : Mathematics
Languages : en
Pages : 286
Book Description
From the spontaneous rapid firing of cortical neurons to the spatial diffusion of disease epidemics, biological systems exhibit rich dynamic behaviour over a vast range of time and space scales. Unifying many of these diverse phenomena, Dynamics of Biological Systems provides the computational and mathematical platform from which to understand the underlying processes of the phenomena. Through an extensive tour of various biological systems, the text introduces computational methods for simulating spatial diffusion processes in excitable media, such as the human heart, as well as mathematical tools for dealing with systems of nonlinear ordinary and partial differential equations, such as neuronal activation and disease diffusion. The mathematical models and computer simulations offer insight into the dynamics of temporal and spatial biological systems, including cardiac pacemakers, artificial electrical defibrillation, pandemics, pattern formation, flocking behaviour, the interaction of autonomous agents, and hierarchical and structured network topologies. Tools from complex systems and complex networks are also presented for dealing with real phenomenological systems. With exercises and projects in each chapter, this classroom-tested text shows students how to apply a variety of mathematical and computational techniques to model and analyze the temporal and spatial phenomena of biological systems. MATLAB® implementations of algorithms and case studies are available on the author’s website.
Dynamical Systems
Author: Zeraoulia Elhadj
Publisher: CRC Press
ISBN: 0429647425
Category : Mathematics
Languages : en
Pages : 307
Book Description
Chaos is the idea that a system will produce very different long-term behaviors when the initial conditions are perturbed only slightly. Chaos is used for novel, time- or energy-critical interdisciplinary applications. Examples include high-performance circuits and devices, liquid mixing, chemical reactions, biological systems, crisis management, secure information processing, and critical decision-making in politics, economics, as well as military applications, etc. This book presents the latest investigations in the theory of chaotic systems and their dynamics. The book covers some theoretical aspects of the subject arising in the study of both discrete and continuous-time chaotic dynamical systems. This book presents the state-of-the-art of the more advanced studies of chaotic dynamical systems.
Publisher: CRC Press
ISBN: 0429647425
Category : Mathematics
Languages : en
Pages : 307
Book Description
Chaos is the idea that a system will produce very different long-term behaviors when the initial conditions are perturbed only slightly. Chaos is used for novel, time- or energy-critical interdisciplinary applications. Examples include high-performance circuits and devices, liquid mixing, chemical reactions, biological systems, crisis management, secure information processing, and critical decision-making in politics, economics, as well as military applications, etc. This book presents the latest investigations in the theory of chaotic systems and their dynamics. The book covers some theoretical aspects of the subject arising in the study of both discrete and continuous-time chaotic dynamical systems. This book presents the state-of-the-art of the more advanced studies of chaotic dynamical systems.
Nonlinear Dynamics and Chaos
Author: Steven H. Strogatz
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.