Author: Michael Tabor
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 392
Book Description
Presents the newer field of chaos in nonlinear dynamics as a natural extension of classical mechanics as treated by differential equations. Employs Hamiltonian systems as the link between classical and nonlinear dynamics, emphasizing the concept of integrability. Also discusses nonintegrable dynamics, the fundamental KAM theorem, integrable partial differential equations, and soliton dynamics.
Chaos and Integrability in Nonlinear Dynamics
Author: Michael Tabor
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 392
Book Description
Presents the newer field of chaos in nonlinear dynamics as a natural extension of classical mechanics as treated by differential equations. Employs Hamiltonian systems as the link between classical and nonlinear dynamics, emphasizing the concept of integrability. Also discusses nonintegrable dynamics, the fundamental KAM theorem, integrable partial differential equations, and soliton dynamics.
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 392
Book Description
Presents the newer field of chaos in nonlinear dynamics as a natural extension of classical mechanics as treated by differential equations. Employs Hamiltonian systems as the link between classical and nonlinear dynamics, emphasizing the concept of integrability. Also discusses nonintegrable dynamics, the fundamental KAM theorem, integrable partial differential equations, and soliton dynamics.
Nonlinear Dynamics
Author: Muthusamy Lakshmanan
Publisher: Springer Science & Business Media
ISBN: 3642556884
Category : Mathematics
Languages : en
Pages : 628
Book Description
This self-contained treatment covers all aspects of nonlinear dynamics, from fundamentals to recent developments, in a unified and comprehensive way. Numerous examples and exercises will help the student to assimilate and apply the techniques presented.
Publisher: Springer Science & Business Media
ISBN: 3642556884
Category : Mathematics
Languages : en
Pages : 628
Book Description
This self-contained treatment covers all aspects of nonlinear dynamics, from fundamentals to recent developments, in a unified and comprehensive way. Numerous examples and exercises will help the student to assimilate and apply the techniques presented.
Nonlinear Dynamics and Chaos
Author: Steven H. Strogatz
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Integrability and Nonintegrability of Dynamical Systems
Author: Alain Goriely
Publisher: World Scientific
ISBN: 981023533X
Category : Mathematics
Languages : en
Pages : 435
Book Description
This invaluable book examines qualitative and quantitative methods for nonlinear differential equations, as well as integrability and nonintegrability theory. Starting from the idea of a constant of motion for simple systems of differential equations, it investigates the essence of integrability, its geometrical relevance and dynamical consequences. Integrability theory is approached from different perspectives, first in terms of differential algebra, then in terms of complex time singularities and finally from the viewpoint of phase geometry (for both Hamiltonian and non-Hamiltonian systems). As generic systems of differential equations cannot be exactly solved, the book reviews the different notions of nonintegrability and shows how to prove the nonexistence of exact solutions and/or a constant of motion. Finally, nonintegrability theory is linked to dynamical systems theory by showing how the property of complete integrability, partial integrability or nonintegrability can be related to regular and irregular dynamics in phase space.
Publisher: World Scientific
ISBN: 981023533X
Category : Mathematics
Languages : en
Pages : 435
Book Description
This invaluable book examines qualitative and quantitative methods for nonlinear differential equations, as well as integrability and nonintegrability theory. Starting from the idea of a constant of motion for simple systems of differential equations, it investigates the essence of integrability, its geometrical relevance and dynamical consequences. Integrability theory is approached from different perspectives, first in terms of differential algebra, then in terms of complex time singularities and finally from the viewpoint of phase geometry (for both Hamiltonian and non-Hamiltonian systems). As generic systems of differential equations cannot be exactly solved, the book reviews the different notions of nonintegrability and shows how to prove the nonexistence of exact solutions and/or a constant of motion. Finally, nonintegrability theory is linked to dynamical systems theory by showing how the property of complete integrability, partial integrability or nonintegrability can be related to regular and irregular dynamics in phase space.
Introduction to Applied Nonlinear Dynamical Systems and Chaos
Author: Stephen Wiggins
Publisher: Springer Science & Business Media
ISBN: 0387217495
Category : Mathematics
Languages : en
Pages : 860
Book Description
This introduction to applied nonlinear dynamics and chaos places emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains a detailed glossary of terms. From the reviews: "Will serve as one of the most eminent introductions to the geometric theory of dynamical systems." --Monatshefte für Mathematik
Publisher: Springer Science & Business Media
ISBN: 0387217495
Category : Mathematics
Languages : en
Pages : 860
Book Description
This introduction to applied nonlinear dynamics and chaos places emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains a detailed glossary of terms. From the reviews: "Will serve as one of the most eminent introductions to the geometric theory of dynamical systems." --Monatshefte für Mathematik
Dynamics of Nonlinear Time-Delay Systems
Author: Muthusamy Lakshmanan
Publisher: Springer Science & Business Media
ISBN: 3642149383
Category : Science
Languages : en
Pages : 322
Book Description
Synchronization of chaotic systems, a patently nonlinear phenomenon, has emerged as a highly active interdisciplinary research topic at the interface of physics, biology, applied mathematics and engineering sciences. In this connection, time-delay systems described by delay differential equations have developed as particularly suitable tools for modeling specific dynamical systems. Indeed, time-delay is ubiquitous in many physical systems, for example due to finite switching speeds of amplifiers in electronic circuits, finite lengths of vehicles in traffic flows, finite signal propagation times in biological networks and circuits, and quite generally whenever memory effects are relevant. This monograph presents the basics of chaotic time-delay systems and their synchronization with an emphasis on the effects of time-delay feedback which give rise to new collective dynamics. Special attention is devoted to scalar chaotic/hyperchaotic time-delay systems, and some higher order models, occurring in different branches of science and technology as well as to the synchronization of their coupled versions. Last but not least, the presentation as a whole strives for a balance between the necessary mathematical description of the basics and the detailed presentation of real-world applications.
Publisher: Springer Science & Business Media
ISBN: 3642149383
Category : Science
Languages : en
Pages : 322
Book Description
Synchronization of chaotic systems, a patently nonlinear phenomenon, has emerged as a highly active interdisciplinary research topic at the interface of physics, biology, applied mathematics and engineering sciences. In this connection, time-delay systems described by delay differential equations have developed as particularly suitable tools for modeling specific dynamical systems. Indeed, time-delay is ubiquitous in many physical systems, for example due to finite switching speeds of amplifiers in electronic circuits, finite lengths of vehicles in traffic flows, finite signal propagation times in biological networks and circuits, and quite generally whenever memory effects are relevant. This monograph presents the basics of chaotic time-delay systems and their synchronization with an emphasis on the effects of time-delay feedback which give rise to new collective dynamics. Special attention is devoted to scalar chaotic/hyperchaotic time-delay systems, and some higher order models, occurring in different branches of science and technology as well as to the synchronization of their coupled versions. Last but not least, the presentation as a whole strives for a balance between the necessary mathematical description of the basics and the detailed presentation of real-world applications.
Classical Mechanics
Author: Joseph L. McCauley
Publisher: Cambridge University Press
ISBN: 9780521578820
Category : Science
Languages : en
Pages : 492
Book Description
This advanced text is the first book to describe the subject of classical mechanics in the context of the language and methods of modern nonlinear dynamics. The organizing principle of the text is integrability vs. nonintegrability.
Publisher: Cambridge University Press
ISBN: 9780521578820
Category : Science
Languages : en
Pages : 492
Book Description
This advanced text is the first book to describe the subject of classical mechanics in the context of the language and methods of modern nonlinear dynamics. The organizing principle of the text is integrability vs. nonintegrability.
Methods of Qualitative Theory in Nonlinear Dynamics
Author: Leonid P. Shilnikov
Publisher: World Scientific
ISBN: 9789810233822
Category : Science
Languages : en
Pages : 420
Book Description
Bifurcation and Chaos has dominated research in nonlinear dynamics for over two decades and numerous introductory and advanced books have been published on this subject. There remains, however, a dire need for a textbook which provides a pedagogically appealing yet rigorous mathematical bridge between these two disparate levels of exposition. This book is written to serve the above unfulfilled need. Following the footsteps of Poincare, and the renowned Andronov school of nonlinear oscillations, this book focuses on the qualitative study of high-dimensional nonlinear dynamical systems. Many of the qualitative methods and tools presented in this book were developed only recently and have not yet appeared in a textbook form. In keeping with the self-contained nature of this book, all topics are developed with an introductory background and complete mathematical rigor. Generously illustrated and written with a high level of exposition, this book will appeal to both beginners and advanced studentsof nonlinear dynamics interested in learning a rigorous mathematical foundation of this fascinating subject.
Publisher: World Scientific
ISBN: 9789810233822
Category : Science
Languages : en
Pages : 420
Book Description
Bifurcation and Chaos has dominated research in nonlinear dynamics for over two decades and numerous introductory and advanced books have been published on this subject. There remains, however, a dire need for a textbook which provides a pedagogically appealing yet rigorous mathematical bridge between these two disparate levels of exposition. This book is written to serve the above unfulfilled need. Following the footsteps of Poincare, and the renowned Andronov school of nonlinear oscillations, this book focuses on the qualitative study of high-dimensional nonlinear dynamical systems. Many of the qualitative methods and tools presented in this book were developed only recently and have not yet appeared in a textbook form. In keeping with the self-contained nature of this book, all topics are developed with an introductory background and complete mathematical rigor. Generously illustrated and written with a high level of exposition, this book will appeal to both beginners and advanced studentsof nonlinear dynamics interested in learning a rigorous mathematical foundation of this fascinating subject.
Nonlinear Dynamics
Author: Muthusamy Lakshmanan
Publisher: Springer Science & Business Media
ISBN: 9783540439080
Category : Mathematics
Languages : en
Pages : 644
Book Description
This self-contained treatment covers all aspects of nonlinear dynamics, from fundamentals to recent developments, in a unified and comprehensive way. Numerous examples and exercises will help the student to assimilate and apply the techniques presented.
Publisher: Springer Science & Business Media
ISBN: 9783540439080
Category : Mathematics
Languages : en
Pages : 644
Book Description
This self-contained treatment covers all aspects of nonlinear dynamics, from fundamentals to recent developments, in a unified and comprehensive way. Numerous examples and exercises will help the student to assimilate and apply the techniques presented.
Nonlinear Dynamics in Circuits
Author: Thomas L. Carroll
Publisher: World Scientific
ISBN: 9789810224387
Category : Science
Languages : en
Pages : 352
Book Description
This volume describes the use of simple analog circuits to study nonlinear dynamics, chaos and stochastic resonance. The circuit experiments that are described are mostly easy and inexpensive to reproduce, and yet these experiments come from the forefront of nonlinear dynamics research. The individual chapters describe why analog circuits are so useful for studying nonlinear dynamics, and include theoretical as well as experimental results from some of the leading researchers in the field. Most of the articles contain some tutorial sections for the less experienced readers.The audience for this book includes researchers in nonlinear dynamics, chaos and statistical physics as well as electrical engineering, and graduate and advanced undergraduate students in these fields.
Publisher: World Scientific
ISBN: 9789810224387
Category : Science
Languages : en
Pages : 352
Book Description
This volume describes the use of simple analog circuits to study nonlinear dynamics, chaos and stochastic resonance. The circuit experiments that are described are mostly easy and inexpensive to reproduce, and yet these experiments come from the forefront of nonlinear dynamics research. The individual chapters describe why analog circuits are so useful for studying nonlinear dynamics, and include theoretical as well as experimental results from some of the leading researchers in the field. Most of the articles contain some tutorial sections for the less experienced readers.The audience for this book includes researchers in nonlinear dynamics, chaos and statistical physics as well as electrical engineering, and graduate and advanced undergraduate students in these fields.