Author: Vasily Demyanov
Publisher:
ISBN: 9781523119875
Category : Geological modeling
Languages : en
Pages :
Book Description
Many advances in stochastic reservoir modelling have been introduced in the past decade. Novel method of data integration and more accurate representation of geology have been developed with the advances in spatial statistics. However, integrated approach for predictive reservoir modelling still attracts continuous effort to manage reservoir decisions under uncertainty and make better use of the increasing amounts of data and domain knowledge accumulated in the field. Many solutions to these challenges lie in the cross-disciplinary vision, where modern rigour of computer science and statistics brought together with core geological and engineering domain expertise and basic physical conceptual thinking.
Challenges and Solutions in Stochastic Reservoir Modelling
Author: Vasily Demyanov
Publisher:
ISBN: 9781523119875
Category : Geological modeling
Languages : en
Pages :
Book Description
Many advances in stochastic reservoir modelling have been introduced in the past decade. Novel method of data integration and more accurate representation of geology have been developed with the advances in spatial statistics. However, integrated approach for predictive reservoir modelling still attracts continuous effort to manage reservoir decisions under uncertainty and make better use of the increasing amounts of data and domain knowledge accumulated in the field. Many solutions to these challenges lie in the cross-disciplinary vision, where modern rigour of computer science and statistics brought together with core geological and engineering domain expertise and basic physical conceptual thinking.
Publisher:
ISBN: 9781523119875
Category : Geological modeling
Languages : en
Pages :
Book Description
Many advances in stochastic reservoir modelling have been introduced in the past decade. Novel method of data integration and more accurate representation of geology have been developed with the advances in spatial statistics. However, integrated approach for predictive reservoir modelling still attracts continuous effort to manage reservoir decisions under uncertainty and make better use of the increasing amounts of data and domain knowledge accumulated in the field. Many solutions to these challenges lie in the cross-disciplinary vision, where modern rigour of computer science and statistics brought together with core geological and engineering domain expertise and basic physical conceptual thinking.
Geostatistical Reservoir Modeling
Author: Michael J. Pyrcz
Publisher: Oxford University Press
ISBN: 0199358834
Category : Mathematics
Languages : en
Pages : 449
Book Description
Published in 2002, the first edition of Geostatistical Reservoir Modeling brought the practice of petroleum geostatistics into a coherent framework, focusing on tools, techniques, examples, and guidance. It emphasized the interaction between geophysicists, geologists, and engineers, and was received well by professionals, academics, and both graduate and undergraduate students. In this revised second edition, Deutsch collaborates with co-author Michael Pyrcz to provide an expanded (in coverage and format), full color illustrated, more comprehensive treatment of the subject with a full update on the latest tools, methods, practice, and research in the field of petroleum Geostatistics. Key geostatistical concepts such as integration of geologic data and concepts, scale considerations, and uncertainty models receive greater attention, and new comprehensive sections are provided on preliminary geological modeling concepts, data inventory, conceptual model, problem formulation, large scale modeling, multiple point-based simulation and event-based modeling. Geostatistical methods are extensively illustrated through enhanced schematics, work flows and examples with discussion on method capabilities and selection. For example, this expanded second edition includes extensive discussion on the process of moving from an inventory of data and concepts through conceptual model to problem formulation to solve practical reservoir problems. A greater number of examples are included, with a set of practical geostatistical studies developed to illustrate the steps from data analysis and cleaning to post-processing, and ranking. New methods, which have developed in the field since the publication of the first edition, are discussed, such as models for integration of diverse data sources, multiple point-based simulation, event-based simulation, spatial bootstrap and methods to summarize geostatistical realizations.
Publisher: Oxford University Press
ISBN: 0199358834
Category : Mathematics
Languages : en
Pages : 449
Book Description
Published in 2002, the first edition of Geostatistical Reservoir Modeling brought the practice of petroleum geostatistics into a coherent framework, focusing on tools, techniques, examples, and guidance. It emphasized the interaction between geophysicists, geologists, and engineers, and was received well by professionals, academics, and both graduate and undergraduate students. In this revised second edition, Deutsch collaborates with co-author Michael Pyrcz to provide an expanded (in coverage and format), full color illustrated, more comprehensive treatment of the subject with a full update on the latest tools, methods, practice, and research in the field of petroleum Geostatistics. Key geostatistical concepts such as integration of geologic data and concepts, scale considerations, and uncertainty models receive greater attention, and new comprehensive sections are provided on preliminary geological modeling concepts, data inventory, conceptual model, problem formulation, large scale modeling, multiple point-based simulation and event-based modeling. Geostatistical methods are extensively illustrated through enhanced schematics, work flows and examples with discussion on method capabilities and selection. For example, this expanded second edition includes extensive discussion on the process of moving from an inventory of data and concepts through conceptual model to problem formulation to solve practical reservoir problems. A greater number of examples are included, with a set of practical geostatistical studies developed to illustrate the steps from data analysis and cleaning to post-processing, and ranking. New methods, which have developed in the field since the publication of the first edition, are discussed, such as models for integration of diverse data sources, multiple point-based simulation, event-based simulation, spatial bootstrap and methods to summarize geostatistical realizations.
Machine Learning and Artificial Intelligence in Geosciences
Author:
Publisher: Academic Press
ISBN: 0128216840
Category : Science
Languages : en
Pages : 318
Book Description
Advances in Geophysics, Volume 61 - Machine Learning and Artificial Intelligence in Geosciences, the latest release in this highly-respected publication in the field of geophysics, contains new chapters on a variety of topics, including a historical review on the development of machine learning, machine learning to investigate fault rupture on various scales, a review on machine learning techniques to describe fractured media, signal augmentation to improve the generalization of deep neural networks, deep generator priors for Bayesian seismic inversion, as well as a review on homogenization for seismology, and more. - Provides high-level reviews of the latest innovations in geophysics - Written by recognized experts in the field - Presents an essential publication for researchers in all fields of geophysics
Publisher: Academic Press
ISBN: 0128216840
Category : Science
Languages : en
Pages : 318
Book Description
Advances in Geophysics, Volume 61 - Machine Learning and Artificial Intelligence in Geosciences, the latest release in this highly-respected publication in the field of geophysics, contains new chapters on a variety of topics, including a historical review on the development of machine learning, machine learning to investigate fault rupture on various scales, a review on machine learning techniques to describe fractured media, signal augmentation to improve the generalization of deep neural networks, deep generator priors for Bayesian seismic inversion, as well as a review on homogenization for seismology, and more. - Provides high-level reviews of the latest innovations in geophysics - Written by recognized experts in the field - Presents an essential publication for researchers in all fields of geophysics
Data Analytics in Reservoir Engineering
Author: Sathish Sankaran
Publisher:
ISBN: 9781613998205
Category :
Languages : en
Pages : 108
Book Description
Data Analytics in Reservoir Engineering describes the relevance of data analytics for the oil and gas industry, with particular emphasis on reservoir engineering.
Publisher:
ISBN: 9781613998205
Category :
Languages : en
Pages : 108
Book Description
Data Analytics in Reservoir Engineering describes the relevance of data analytics for the oil and gas industry, with particular emphasis on reservoir engineering.
Geostatistical Simulation
Author: Christian Lantuejoul
Publisher: Springer Science & Business Media
ISBN: 3662048086
Category : Mathematics
Languages : en
Pages : 262
Book Description
This book deals with the estimation of natural resources using the Monte Carlo methodology. It includes a set of tools to describe the morphological, statistical and stereological properties of spatial random models. Furthermore, the author presents a wide range of spatial models, including random sets and functions, point processes and object populations applicable to the geosciences. The text is based on a series of courses given in the USA and Latin America to civil, mining and petroleum engineers as well as graduate students in statistics. It is the first book to discuss the geostatistical simulation techniques in such a specific way.
Publisher: Springer Science & Business Media
ISBN: 3662048086
Category : Mathematics
Languages : en
Pages : 262
Book Description
This book deals with the estimation of natural resources using the Monte Carlo methodology. It includes a set of tools to describe the morphological, statistical and stereological properties of spatial random models. Furthermore, the author presents a wide range of spatial models, including random sets and functions, point processes and object populations applicable to the geosciences. The text is based on a series of courses given in the USA and Latin America to civil, mining and petroleum engineers as well as graduate students in statistics. It is the first book to discuss the geostatistical simulation techniques in such a specific way.
Quantifying Uncertainty in Subsurface Systems
Author: Céline Scheidt
Publisher: John Wiley & Sons
ISBN: 1119325870
Category : Science
Languages : en
Pages : 304
Book Description
Under the Earth’s surface is a rich array of geological resources, many with potential use to humankind. However, extracting and harnessing them comes with enormous uncertainties, high costs, and considerable risks. The valuation of subsurface resources involves assessing discordant factors to produce a decision model that is functional and sustainable. This volume provides real-world examples relating to oilfields, geothermal systems, contaminated sites, and aquifer recharge. Volume highlights include: • A multi-disciplinary treatment of uncertainty quantification • Case studies with actual data that will appeal to methodology developers • A Bayesian evidential learning framework that reduces computation and modeling time Quantifying Uncertainty in Subsurface Systems is a multidisciplinary volume that brings together five major fields: information science, decision science, geosciences, data science and computer science. It will appeal to both students and practitioners, and be a valuable resource for geoscientists, engineers and applied mathematicians. Read the Editors’ Vox: https://eos.org/editors-vox/quantifying-uncertainty-about-earths-resources
Publisher: John Wiley & Sons
ISBN: 1119325870
Category : Science
Languages : en
Pages : 304
Book Description
Under the Earth’s surface is a rich array of geological resources, many with potential use to humankind. However, extracting and harnessing them comes with enormous uncertainties, high costs, and considerable risks. The valuation of subsurface resources involves assessing discordant factors to produce a decision model that is functional and sustainable. This volume provides real-world examples relating to oilfields, geothermal systems, contaminated sites, and aquifer recharge. Volume highlights include: • A multi-disciplinary treatment of uncertainty quantification • Case studies with actual data that will appeal to methodology developers • A Bayesian evidential learning framework that reduces computation and modeling time Quantifying Uncertainty in Subsurface Systems is a multidisciplinary volume that brings together five major fields: information science, decision science, geosciences, data science and computer science. It will appeal to both students and practitioners, and be a valuable resource for geoscientists, engineers and applied mathematicians. Read the Editors’ Vox: https://eos.org/editors-vox/quantifying-uncertainty-about-earths-resources
Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling
Author: Y. Z. Ma
Publisher: Springer
ISBN: 3030178609
Category : Technology & Engineering
Languages : en
Pages : 646
Book Description
Earth science is becoming increasingly quantitative in the digital age. Quantification of geoscience and engineering problems underpins many of the applications of big data and artificial intelligence. This book presents quantitative geosciences in three parts. Part 1 presents data analytics using probability, statistical and machine-learning methods. Part 2 covers reservoir characterization using several geoscience disciplines: including geology, geophysics, petrophysics and geostatistics. Part 3 treats reservoir modeling, resource evaluation and uncertainty analysis using integrated geoscience, engineering and geostatistical methods. As the petroleum industry is heading towards operating oil fields digitally, a multidisciplinary skillset is a must for geoscientists who need to use data analytics to resolve inconsistencies in various sources of data, model reservoir properties, evaluate uncertainties, and quantify risk for decision making. This book intends to serve as a bridge for advancing the multidisciplinary integration for digital fields. The goal is to move beyond using quantitative methods individually to an integrated descriptive-quantitative analysis. In big data, everything tells us something, but nothing tells us everything. This book emphasizes the integrated, multidisciplinary solutions for practical problems in resource evaluation and field development.
Publisher: Springer
ISBN: 3030178609
Category : Technology & Engineering
Languages : en
Pages : 646
Book Description
Earth science is becoming increasingly quantitative in the digital age. Quantification of geoscience and engineering problems underpins many of the applications of big data and artificial intelligence. This book presents quantitative geosciences in three parts. Part 1 presents data analytics using probability, statistical and machine-learning methods. Part 2 covers reservoir characterization using several geoscience disciplines: including geology, geophysics, petrophysics and geostatistics. Part 3 treats reservoir modeling, resource evaluation and uncertainty analysis using integrated geoscience, engineering and geostatistical methods. As the petroleum industry is heading towards operating oil fields digitally, a multidisciplinary skillset is a must for geoscientists who need to use data analytics to resolve inconsistencies in various sources of data, model reservoir properties, evaluate uncertainties, and quantify risk for decision making. This book intends to serve as a bridge for advancing the multidisciplinary integration for digital fields. The goal is to move beyond using quantitative methods individually to an integrated descriptive-quantitative analysis. In big data, everything tells us something, but nothing tells us everything. This book emphasizes the integrated, multidisciplinary solutions for practical problems in resource evaluation and field development.
Reservoir Model Design
Author: Philip Ringrose
Publisher: Springer
ISBN: 9400754973
Category : Science
Languages : en
Pages : 260
Book Description
This book gives practical advice and ready to use tips on the design and construction of subsurface reservoir models. The design elements cover rock architecture, petrophysical property modelling, multi-scale data integration, upscaling and uncertainty analysis. Philip Ringrose and Mark Bentley share their experience, gained from over a hundred reservoir modelling studies in 25 countries covering clastic, carbonate and fractured reservoir types. The intimate relationship between geology and fluid flow is explored throughout, showing how the impact of fluid type, production mechanism and the subtleties of single- and multi-phase flow combine to influence reservoir model design. Audience: The main audience for this book is the community of applied geoscientists and engineers involved in the development and use of subsurface fluid resources. The book is suitable for a range of Master’s level courses in reservoir characterisation, modelling and engineering. · Provides practical advice and guidelines for users of 3D reservoir modelling packages · Gives advice on reservoir model design for the growing world-wide activity in subsurface reservoir modelling · Covers rock modelling, property modelling, upscaling and uncertainty handling · Encompasses clastic, carbonate and fractured reservoirs
Publisher: Springer
ISBN: 9400754973
Category : Science
Languages : en
Pages : 260
Book Description
This book gives practical advice and ready to use tips on the design and construction of subsurface reservoir models. The design elements cover rock architecture, petrophysical property modelling, multi-scale data integration, upscaling and uncertainty analysis. Philip Ringrose and Mark Bentley share their experience, gained from over a hundred reservoir modelling studies in 25 countries covering clastic, carbonate and fractured reservoir types. The intimate relationship between geology and fluid flow is explored throughout, showing how the impact of fluid type, production mechanism and the subtleties of single- and multi-phase flow combine to influence reservoir model design. Audience: The main audience for this book is the community of applied geoscientists and engineers involved in the development and use of subsurface fluid resources. The book is suitable for a range of Master’s level courses in reservoir characterisation, modelling and engineering. · Provides practical advice and guidelines for users of 3D reservoir modelling packages · Gives advice on reservoir model design for the growing world-wide activity in subsurface reservoir modelling · Covers rock modelling, property modelling, upscaling and uncertainty handling · Encompasses clastic, carbonate and fractured reservoirs
Applied Geostatistics with SGeMS
Author: Nicolas Remy
Publisher: Cambridge University Press
ISBN: 1139473468
Category : Science
Languages : en
Pages : 302
Book Description
The Stanford Geostatistical Modeling Software (SGeMS) is an open-source computer package for solving problems involving spatially related variables. It provides geostatistics practitioners with a user-friendly interface, an interactive 3-D visualization, and a wide selection of algorithms. This practical book provides a step-by-step guide to using SGeMS algorithms. It explains the underlying theory, demonstrates their implementation, discusses their potential limitations, and helps the user make an informed decision about the choice of one algorithm over another. Users can complete complex tasks using the embedded scripting language, and new algorithms can be developed and integrated through the SGeMS plug-in mechanism. SGeMS was the first software to provide algorithms for multiple-point statistics, and the book presents a discussion of the corresponding theory and applications. Incorporating the full SGeMS software (now available from www.cambridge.org/9781107403246), this book is a useful user-guide for Earth Science graduates and researchers, as well as practitioners of environmental mining and petroleum engineering.
Publisher: Cambridge University Press
ISBN: 1139473468
Category : Science
Languages : en
Pages : 302
Book Description
The Stanford Geostatistical Modeling Software (SGeMS) is an open-source computer package for solving problems involving spatially related variables. It provides geostatistics practitioners with a user-friendly interface, an interactive 3-D visualization, and a wide selection of algorithms. This practical book provides a step-by-step guide to using SGeMS algorithms. It explains the underlying theory, demonstrates their implementation, discusses their potential limitations, and helps the user make an informed decision about the choice of one algorithm over another. Users can complete complex tasks using the embedded scripting language, and new algorithms can be developed and integrated through the SGeMS plug-in mechanism. SGeMS was the first software to provide algorithms for multiple-point statistics, and the book presents a discussion of the corresponding theory and applications. Incorporating the full SGeMS software (now available from www.cambridge.org/9781107403246), this book is a useful user-guide for Earth Science graduates and researchers, as well as practitioners of environmental mining and petroleum engineering.
Handbook of Mathematical Geosciences
Author: B.S. Daya Sagar
Publisher: Springer
ISBN: 3319789996
Category : Science
Languages : en
Pages : 911
Book Description
This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences.
Publisher: Springer
ISBN: 3319789996
Category : Science
Languages : en
Pages : 911
Book Description
This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences.