Certified Reduced Basis Methods for Parametrized Partial Differential Equations

Certified Reduced Basis Methods for Parametrized Partial Differential Equations PDF Author: Jan S Hesthaven
Publisher: Springer
ISBN: 3319224700
Category : Mathematics
Languages : en
Pages : 139

Get Book Here

Book Description
This book provides a thorough introduction to the mathematical and algorithmic aspects of certified reduced basis methods for parametrized partial differential equations. Central aspects ranging from model construction, error estimation and computational efficiency to empirical interpolation methods are discussed in detail for coercive problems. More advanced aspects associated with time-dependent problems, non-compliant and non-coercive problems and applications with geometric variation are also discussed as examples.

Certified Reduced Basis Methods for Parametrized Partial Differential Equations

Certified Reduced Basis Methods for Parametrized Partial Differential Equations PDF Author: Jan S Hesthaven
Publisher: Springer
ISBN: 3319224700
Category : Mathematics
Languages : en
Pages : 139

Get Book Here

Book Description
This book provides a thorough introduction to the mathematical and algorithmic aspects of certified reduced basis methods for parametrized partial differential equations. Central aspects ranging from model construction, error estimation and computational efficiency to empirical interpolation methods are discussed in detail for coercive problems. More advanced aspects associated with time-dependent problems, non-compliant and non-coercive problems and applications with geometric variation are also discussed as examples.

Reduced Basis Methods for Partial Differential Equations

Reduced Basis Methods for Partial Differential Equations PDF Author: Alfio Quarteroni
Publisher: Springer
ISBN: 3319154311
Category : Mathematics
Languages : en
Pages : 305

Get Book Here

Book Description
This book provides a basic introduction to reduced basis (RB) methods for problems involving the repeated solution of partial differential equations (PDEs) arising from engineering and applied sciences, such as PDEs depending on several parameters and PDE-constrained optimization. The book presents a general mathematical formulation of RB methods, analyzes their fundamental theoretical properties, discusses the related algorithmic and implementation aspects, and highlights their built-in algebraic and geometric structures. More specifically, the authors discuss alternative strategies for constructing accurate RB spaces using greedy algorithms and proper orthogonal decomposition techniques, investigate their approximation properties and analyze offline-online decomposition strategies aimed at the reduction of computational complexity. Furthermore, they carry out both a priori and a posteriori error analysis. The whole mathematical presentation is made more stimulating by the use of representative examples of applicative interest in the context of both linear and nonlinear PDEs. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The book will be ideal for upper undergraduate students and, more generally, people interested in scientific computing. All these pseudocodes are in fact implemented in a MATLAB package that is freely available at https://github.com/redbkit

Model Reduction and Approximation

Model Reduction and Approximation PDF Author: Peter Benner
Publisher: SIAM
ISBN: 161197481X
Category : Science
Languages : en
Pages : 421

Get Book Here

Book Description
Many physical, chemical, biomedical, and technical processes can be described by partial differential equations or dynamical systems. In spite of increasing computational capacities, many problems are of such high complexity that they are solvable only with severe simplifications, and the design of efficient numerical schemes remains a central research challenge. This book presents a tutorial introduction to recent developments in mathematical methods for model reduction and approximation of complex systems. Model Reduction and Approximation: Theory and Algorithms contains three parts that cover (I) sampling-based methods, such as the reduced basis method and proper orthogonal decomposition, (II) approximation of high-dimensional problems by low-rank tensor techniques, and (III) system-theoretic methods, such as balanced truncation, interpolatory methods, and the Loewner framework. It is tutorial in nature, giving an accessible introduction to state-of-the-art model reduction and approximation methods. It also covers a wide range of methods drawn from typically distinct communities (sampling based, tensor based, system-theoretic).?? This book is intended for researchers interested in model reduction and approximation, particularly graduate students and young researchers.

Control and Estimation of Distributed Parameter Systems

Control and Estimation of Distributed Parameter Systems PDF Author: W. Desch
Publisher: Birkhäuser
ISBN: 303488849X
Category : Mathematics
Languages : en
Pages : 308

Get Book Here

Book Description
Consisting of 23 refereed contributions, this volume offers a broad and diverse view of current research in control and estimation of partial differential equations. Topics addressed include, but are not limited to - control and stability of hyperbolic systems related to elasticity, linear and nonlinear; - control and identification of nonlinear parabolic systems; - exact and approximate controllability, and observability; - Pontryagin's maximum principle and dynamic programming in PDE; and - numerics pertinent to optimal and suboptimal control problems. This volume is primarily geared toward control theorists seeking information on the latest developments in their area of expertise. It may also serve as a stimulating reader to any researcher who wants to gain an impression of activities at the forefront of a vigorously expanding area in applied mathematics.

Model Reduction of Parametrized Systems

Model Reduction of Parametrized Systems PDF Author: Peter Benner
Publisher: Springer
ISBN: 3319587862
Category : Mathematics
Languages : en
Pages : 503

Get Book Here

Book Description
The special volume offers a global guide to new concepts and approaches concerning the following topics: reduced basis methods, proper orthogonal decomposition, proper generalized decomposition, approximation theory related to model reduction, learning theory and compressed sensing, stochastic and high-dimensional problems, system-theoretic methods, nonlinear model reduction, reduction of coupled problems/multiphysics, optimization and optimal control, state estimation and control, reduced order models and domain decomposition methods, Krylov-subspace and interpolatory methods, and applications to real industrial and complex problems. The book represents the state of the art in the development of reduced order methods. It contains contributions from internationally respected experts, guaranteeing a wide range of expertise and topics. Further, it reflects an important effor t, carried out over the last 12 years, to build a growing research community in this field. Though not a textbook, some of the chapters can be used as reference materials or lecture notes for classes and tutorials (doctoral schools, master classes).

Optimization with PDE Constraints

Optimization with PDE Constraints PDF Author: Michael Hinze
Publisher: Springer Science & Business Media
ISBN: 1402088396
Category : Mathematics
Languages : en
Pages : 279

Get Book Here

Book Description
Solving optimization problems subject to constraints given in terms of partial d- ferential equations (PDEs) with additional constraints on the controls and/or states is one of the most challenging problems in the context of industrial, medical and economical applications, where the transition from model-based numerical si- lations to model-based design and optimal control is crucial. For the treatment of such optimization problems the interaction of optimization techniques and num- ical simulation plays a central role. After proper discretization, the number of op- 3 10 timization variables varies between 10 and 10 . It is only very recently that the enormous advances in computing power have made it possible to attack problems of this size. However, in order to accomplish this task it is crucial to utilize and f- ther explore the speci?c mathematical structure of optimization problems with PDE constraints, and to develop new mathematical approaches concerning mathematical analysis, structure exploiting algorithms, and discretization, with a special focus on prototype applications. The present book provides a modern introduction to the rapidly developing ma- ematical ?eld of optimization with PDE constraints. The ?rst chapter introduces to the analytical background and optimality theory for optimization problems with PDEs. Optimization problems with PDE-constraints are posed in in?nite dim- sional spaces. Therefore, functional analytic techniques, function space theory, as well as existence- and uniqueness results for the underlying PDE are essential to study the existence of optimal solutions and to derive optimality conditions.

Reduced Order Methods for Modeling and Computational Reduction

Reduced Order Methods for Modeling and Computational Reduction PDF Author: Alfio Quarteroni
Publisher: Springer
ISBN: 3319020900
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
This monograph addresses the state of the art of reduced order methods for modeling and computational reduction of complex parametrized systems, governed by ordinary and/or partial differential equations, with a special emphasis on real time computing techniques and applications in computational mechanics, bioengineering and computer graphics. Several topics are covered, including: design, optimization, and control theory in real-time with applications in engineering; data assimilation, geometry registration, and parameter estimation with special attention to real-time computing in biomedical engineering and computational physics; real-time visualization of physics-based simulations in computer science; the treatment of high-dimensional problems in state space, physical space, or parameter space; the interactions between different model reduction and dimensionality reduction approaches; the development of general error estimation frameworks which take into account both model and discretization effects. This book is primarily addressed to computational scientists interested in computational reduction techniques for large scale differential problems.

Least-Squares Finite Element Methods

Least-Squares Finite Element Methods PDF Author: Pavel B. Bochev
Publisher: Springer Science & Business Media
ISBN: 0387689222
Category : Mathematics
Languages : en
Pages : 669

Get Book Here

Book Description
Since their emergence, finite element methods have taken a place as one of the most versatile and powerful methodologies for the approximate numerical solution of Partial Differential Equations. These methods are used in incompressible fluid flow, heat, transfer, and other problems. This book provides researchers and practitioners with a concise guide to the theory and practice of least-square finite element methods, their strengths and weaknesses, established successes, and open problems.

Analytic Methods for Partial Differential Equations

Analytic Methods for Partial Differential Equations PDF Author: G. Evans
Publisher: Springer Science & Business Media
ISBN: 1447103793
Category : Mathematics
Languages : en
Pages : 308

Get Book Here

Book Description
This is the practical introduction to the analytical approach taken in Volume 2. Based upon courses in partial differential equations over the last two decades, the text covers the classic canonical equations, with the method of separation of variables introduced at an early stage. The characteristic method for first order equations acts as an introduction to the classification of second order quasi-linear problems by characteristics. Attention then moves to different co-ordinate systems, primarily those with cylindrical or spherical symmetry. Hence a discussion of special functions arises quite naturally, and in each case the major properties are derived. The next section deals with the use of integral transforms and extensive methods for inverting them, and concludes with links to the use of Fourier series.

 PDF Author:
Publisher: Springer Nature
ISBN: 3031758021
Category :
Languages : en
Pages : 470

Get Book Here

Book Description