Author: Gabriele Manganaro
Publisher: Springer Science & Business Media
ISBN: 3642600441
Category : Computers
Languages : en
Pages : 280
Book Description
The field of cellular neural networks (CNNs) is of growing importance in non linear circuits and systems and it is maturing to the point of becoming a new area of study in general nonlinear theory. CNNs emerged through two semi nal papers co-authored by Professor Leon O. Chua back in 1988. Since then, the attention that CNNs have attracted in the scientific community has been vast. For instance, there are international workshops dedicated to CNNs and their applications, special issues published in both the International Journal of Circuit Theory and in the IEEE Transactions on Circuits and Systems, and there are also Associate Editors appointed in the latter journal especially for the CNN field. All of this bears witness the importance that CNNs are gaining within the scientific community. Without doubt this book is a primer in the field. Its extensive coverage provides the reader with a very comprehensive view of aspects involved in the theory and applications of cellular neural networks. The authors have done an excellent job merging basic CNN theory, synchronization, spatio temporal phenomena and hardware implementation into eight exquisitely written chapters. Each chapter is thoroughly illustrated with examples and case studies. The result is a book that is not only excellent as a professional reference but also very appealing as a textbook. My view is that students as well professional engineers will find this volume extremely useful.
Cellular Neural Networks
Author: Gabriele Manganaro
Publisher: Springer Science & Business Media
ISBN: 3642600441
Category : Computers
Languages : en
Pages : 280
Book Description
The field of cellular neural networks (CNNs) is of growing importance in non linear circuits and systems and it is maturing to the point of becoming a new area of study in general nonlinear theory. CNNs emerged through two semi nal papers co-authored by Professor Leon O. Chua back in 1988. Since then, the attention that CNNs have attracted in the scientific community has been vast. For instance, there are international workshops dedicated to CNNs and their applications, special issues published in both the International Journal of Circuit Theory and in the IEEE Transactions on Circuits and Systems, and there are also Associate Editors appointed in the latter journal especially for the CNN field. All of this bears witness the importance that CNNs are gaining within the scientific community. Without doubt this book is a primer in the field. Its extensive coverage provides the reader with a very comprehensive view of aspects involved in the theory and applications of cellular neural networks. The authors have done an excellent job merging basic CNN theory, synchronization, spatio temporal phenomena and hardware implementation into eight exquisitely written chapters. Each chapter is thoroughly illustrated with examples and case studies. The result is a book that is not only excellent as a professional reference but also very appealing as a textbook. My view is that students as well professional engineers will find this volume extremely useful.
Publisher: Springer Science & Business Media
ISBN: 3642600441
Category : Computers
Languages : en
Pages : 280
Book Description
The field of cellular neural networks (CNNs) is of growing importance in non linear circuits and systems and it is maturing to the point of becoming a new area of study in general nonlinear theory. CNNs emerged through two semi nal papers co-authored by Professor Leon O. Chua back in 1988. Since then, the attention that CNNs have attracted in the scientific community has been vast. For instance, there are international workshops dedicated to CNNs and their applications, special issues published in both the International Journal of Circuit Theory and in the IEEE Transactions on Circuits and Systems, and there are also Associate Editors appointed in the latter journal especially for the CNN field. All of this bears witness the importance that CNNs are gaining within the scientific community. Without doubt this book is a primer in the field. Its extensive coverage provides the reader with a very comprehensive view of aspects involved in the theory and applications of cellular neural networks. The authors have done an excellent job merging basic CNN theory, synchronization, spatio temporal phenomena and hardware implementation into eight exquisitely written chapters. Each chapter is thoroughly illustrated with examples and case studies. The result is a book that is not only excellent as a professional reference but also very appealing as a textbook. My view is that students as well professional engineers will find this volume extremely useful.
Neural Network Analysis, Architectures and Applications
Author: A Browne
Publisher: CRC Press
ISBN: 9780750304993
Category : Mathematics
Languages : en
Pages : 294
Book Description
Neural Network Analysis, Architectures and Applications discusses the main areas of neural networks, with each authoritative chapter covering the latest information from different perspectives. Divided into three parts, the book first lays the groundwork for understanding and simplifying networks. It then describes novel architectures and algorithms, including pulse-stream techniques, cellular neural networks, and multiversion neural computing. The book concludes by examining various neural network applications, such as neuron-fuzzy control systems and image compression. This final part of the book also provides a case study involving oil spill detection. This book is invaluable for students and practitioners who have a basic understanding of neural computing yet want to broaden and deepen their knowledge of the field.
Publisher: CRC Press
ISBN: 9780750304993
Category : Mathematics
Languages : en
Pages : 294
Book Description
Neural Network Analysis, Architectures and Applications discusses the main areas of neural networks, with each authoritative chapter covering the latest information from different perspectives. Divided into three parts, the book first lays the groundwork for understanding and simplifying networks. It then describes novel architectures and algorithms, including pulse-stream techniques, cellular neural networks, and multiversion neural computing. The book concludes by examining various neural network applications, such as neuron-fuzzy control systems and image compression. This final part of the book also provides a case study involving oil spill detection. This book is invaluable for students and practitioners who have a basic understanding of neural computing yet want to broaden and deepen their knowledge of the field.
Cellular Neural Networks and Visual Computing
Author: Leon O. Chua
Publisher: Cambridge University Press
ISBN: 9780521652476
Category : Computers
Languages : en
Pages : 410
Book Description
Cellular Nonlinear/Neural Network (CNN) technology is both a revolutionary concept and an experimentally proven new computing paradigm. Analogic cellular computers based on CNNs are set to change the way analog signals are processed. This unique undergraduate level textbook includes many examples and exercises, including CNN simulator and development software accessible via the Internet. It is an ideal introduction to CNNs and analogic cellular computing for students, researchers and engineers from a wide range of disciplines. Leon Chua, co-inventor of the CNN, and Tamàs Roska are both highly respected pioneers in the field.
Publisher: Cambridge University Press
ISBN: 9780521652476
Category : Computers
Languages : en
Pages : 410
Book Description
Cellular Nonlinear/Neural Network (CNN) technology is both a revolutionary concept and an experimentally proven new computing paradigm. Analogic cellular computers based on CNNs are set to change the way analog signals are processed. This unique undergraduate level textbook includes many examples and exercises, including CNN simulator and development software accessible via the Internet. It is an ideal introduction to CNNs and analogic cellular computing for students, researchers and engineers from a wide range of disciplines. Leon Chua, co-inventor of the CNN, and Tamàs Roska are both highly respected pioneers in the field.
Universality and Emergent Computation in Cellular Neural Networks
Author: Radu Dogaru
Publisher: World Scientific
ISBN: 9812381023
Category : Computers
Languages : en
Pages : 262
Book Description
Cellular computing is a natural information processing paradigm, capable of modeling various biological, physical and social phenomena, as well as other kinds of complex adaptive systems. The programming of a cellular computer is in many respects similar to the genetic evolution in biology, the result being a proper cell design and a task-specific gene.How should one ?program? the cell of a cellular computer such that a dynamic behavior with computational relevance will emerge? What are the ?rules? for designing a computationally universal and efficient cell?The answers to those questions can be found in this book. It introduces the relatively new paradigm of the cellular neural network from an original perspective and provides the reader with the guidelines for understanding how such cellular computers can be ?programmed? and designed optimally. The book contains numerous practical examples and software simulators, allowing readers to experiment with the various phases of designing cellular computers by themselves.
Publisher: World Scientific
ISBN: 9812381023
Category : Computers
Languages : en
Pages : 262
Book Description
Cellular computing is a natural information processing paradigm, capable of modeling various biological, physical and social phenomena, as well as other kinds of complex adaptive systems. The programming of a cellular computer is in many respects similar to the genetic evolution in biology, the result being a proper cell design and a task-specific gene.How should one ?program? the cell of a cellular computer such that a dynamic behavior with computational relevance will emerge? What are the ?rules? for designing a computationally universal and efficient cell?The answers to those questions can be found in this book. It introduces the relatively new paradigm of the cellular neural network from an original perspective and provides the reader with the guidelines for understanding how such cellular computers can be ?programmed? and designed optimally. The book contains numerous practical examples and software simulators, allowing readers to experiment with the various phases of designing cellular computers by themselves.
Cellular Neural Networks, Multi-scroll Chaos and Synchronization
Author: M?tak E. Yalin
Publisher: World Scientific
ISBN: 9812561617
Category : Computers
Languages : en
Pages : 248
Book Description
For engineering applications that are based on nonlinear phenomena, novel information processing systems require new methodologies and design principles. This perspective is the basis of the three cornerstones of this book: cellular neural networks, chaos and synchronization. Cellular neural networks and their universal machine implementations offer a well-established platform for processing spatial-temporal patterns and wave computing. Multi-scroll circuits are generalizations to the original Chua's circuit, leading to chip implementable circuits with increasingly complex attractors. Several applications make use of synchronization techniques for nonlinear systems. A systematic overview is given for Lur'e representable systems with global synchronization criteria for master-slave and mutual synchronization, robust synchronization, HV synchronization, time-delayed systems and impulsive synchronization.
Publisher: World Scientific
ISBN: 9812561617
Category : Computers
Languages : en
Pages : 248
Book Description
For engineering applications that are based on nonlinear phenomena, novel information processing systems require new methodologies and design principles. This perspective is the basis of the three cornerstones of this book: cellular neural networks, chaos and synchronization. Cellular neural networks and their universal machine implementations offer a well-established platform for processing spatial-temporal patterns and wave computing. Multi-scroll circuits are generalizations to the original Chua's circuit, leading to chip implementable circuits with increasingly complex attractors. Several applications make use of synchronization techniques for nonlinear systems. A systematic overview is given for Lur'e representable systems with global synchronization criteria for master-slave and mutual synchronization, robust synchronization, HV synchronization, time-delayed systems and impulsive synchronization.
Artificial Neural Networks for Engineering Applications
Author: Alma Y Alanis
Publisher: Academic Press
ISBN: 0128182474
Category : Science
Languages : en
Pages : 176
Book Description
Artificial Neural Networks for Engineering Applications presents current trends for the solution of complex engineering problems that cannot be solved through conventional methods. The proposed methodologies can be applied to modeling, pattern recognition, classification, forecasting, estimation, and more. Readers will find different methodologies to solve various problems, including complex nonlinear systems, cellular computational networks, waste water treatment, attack detection on cyber-physical systems, control of UAVs, biomechanical and biomedical systems, time series forecasting, biofuels, and more. Besides the real-time implementations, the book contains all the theory required to use the proposed methodologies for different applications.
Publisher: Academic Press
ISBN: 0128182474
Category : Science
Languages : en
Pages : 176
Book Description
Artificial Neural Networks for Engineering Applications presents current trends for the solution of complex engineering problems that cannot be solved through conventional methods. The proposed methodologies can be applied to modeling, pattern recognition, classification, forecasting, estimation, and more. Readers will find different methodologies to solve various problems, including complex nonlinear systems, cellular computational networks, waste water treatment, attack detection on cyber-physical systems, control of UAVs, biomechanical and biomedical systems, time series forecasting, biofuels, and more. Besides the real-time implementations, the book contains all the theory required to use the proposed methodologies for different applications.
CNN
Author: Leon O. Chua
Publisher: World Scientific
ISBN: 9789810234836
Category : Computers
Languages : en
Pages : 362
Book Description
Revolutionary and original, this treatise presents a new paradigm of Emergence and Complexity, with applications drawn from numerous disciplines, including artificial life, biology, chemistry, computation, physics, image processing, information science, etc. CNN is an acronym for Cellular Neural Networks when used in the context of brain science, or Cellular Nonlinear Networks, when used in the context of emergence and complexity. A CNN is modeled by cells and interactions: cells are defined as dynamical systems and interactions are defined via coupling laws. The CNN paradigm is a universal Turing machine and includes cellular automata and lattice dynamical systems as special cases. While the CNN paradigm is an example of Reductionism par excellence, the true origin of emergence and complexity is traced to a much deeper new concept called local activity. The numerous complex phenomena unified under this mathematically precise principle include self organization, dissipative structures, synergetics, order from disorder, far-from-thermodynamic equilibrium, collective behaviors, edge of chaos, etc. Written with a high level of exposition, this completely self-contained monograph is profusely illustrated with over 200 stunning color illustrations of emergent phenomena.
Publisher: World Scientific
ISBN: 9789810234836
Category : Computers
Languages : en
Pages : 362
Book Description
Revolutionary and original, this treatise presents a new paradigm of Emergence and Complexity, with applications drawn from numerous disciplines, including artificial life, biology, chemistry, computation, physics, image processing, information science, etc. CNN is an acronym for Cellular Neural Networks when used in the context of brain science, or Cellular Nonlinear Networks, when used in the context of emergence and complexity. A CNN is modeled by cells and interactions: cells are defined as dynamical systems and interactions are defined via coupling laws. The CNN paradigm is a universal Turing machine and includes cellular automata and lattice dynamical systems as special cases. While the CNN paradigm is an example of Reductionism par excellence, the true origin of emergence and complexity is traced to a much deeper new concept called local activity. The numerous complex phenomena unified under this mathematically precise principle include self organization, dissipative structures, synergetics, order from disorder, far-from-thermodynamic equilibrium, collective behaviors, edge of chaos, etc. Written with a high level of exposition, this completely self-contained monograph is profusely illustrated with over 200 stunning color illustrations of emergent phenomena.
Applications of Neural Networks in Electromagnetics
Author: Christos Christodoulou
Publisher: Artech House Publishers
ISBN:
Category : Computers
Languages : en
Pages : 544
Book Description
The high-speed capabilities and learning abilities of neural networks can be applied to quickly solving numerous complex optimization problems in electromagnetics, and this book shows you how. Even if you have no background in neural networks, this book helps you understand the basics of each main network architecture in use today, including its strengths and limitations. Moreover, it gives you the knowledge you need to identify situations when the use of neural networks is the best problem-solving option.
Publisher: Artech House Publishers
ISBN:
Category : Computers
Languages : en
Pages : 544
Book Description
The high-speed capabilities and learning abilities of neural networks can be applied to quickly solving numerous complex optimization problems in electromagnetics, and this book shows you how. Even if you have no background in neural networks, this book helps you understand the basics of each main network architecture in use today, including its strengths and limitations. Moreover, it gives you the knowledge you need to identify situations when the use of neural networks is the best problem-solving option.
Neural and Automata Networks
Author: E. Goles
Publisher: Springer Science & Business Media
ISBN: 9400905297
Category : Computers
Languages : en
Pages : 259
Book Description
"Et moi ..., si j'avait Sll comment en revenir. One sennce mathematics has rendered the human race. It has put common sense back je n'y serais point alle.' Jules Verne whe", it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be smse'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'!ltre of this series
Publisher: Springer Science & Business Media
ISBN: 9400905297
Category : Computers
Languages : en
Pages : 259
Book Description
"Et moi ..., si j'avait Sll comment en revenir. One sennce mathematics has rendered the human race. It has put common sense back je n'y serais point alle.' Jules Verne whe", it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be smse'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'!ltre of this series
The Application of Neural Networks in the Earth System Sciences
Author: Vladimir M. Krasnopolsky
Publisher: Springer Science & Business Media
ISBN: 9400760736
Category : Science
Languages : en
Pages : 205
Book Description
This book brings together a representative set of Earth System Science (ESS) applications of the neural network (NN) technique. It examines a progression of atmospheric and oceanic problems, which, from the mathematical point of view, can be formulated as complex, multidimensional, and nonlinear mappings. It is shown that these problems can be solved utilizing a particular type of NN – the multilayer perceptron (MLP). This type of NN applications covers the majority of NN applications developed in ESSs such as meteorology, oceanography, atmospheric and oceanic satellite remote sensing, numerical weather prediction, and climate studies. The major properties of the mappings and MLP NNs are formulated and discussed. Also, the book presents basic background for each introduced application and provides an extensive set of references. “This is an excellent book to learn how to apply artificial neural network methods to earth system sciences. The author, Dr. Vladimir Krasnopolsky, is a universally recognized master in this field. With his vast knowledge and experience, he carefully guides the reader through a broad variety of problems found in the earth system sciences where neural network methods can be applied fruitfully. (...) The broad range of topics covered in this book ensures that researchers/graduate students from many fields (...) will find it an invaluable guide to neural network methods.” (Prof. William W. Hsieh, University of British Columbia, Vancouver, Canada) “Vladimir Krasnopolsky has been the “founding father” of applying computation intelligence methods to environmental science; (...) Dr. Krasnopolsky has created a masterful exposition of a young, yet maturing field that promises to advance a deeper understanding of best modeling practices in environmental science.” (Dr. Sue Ellen Haupt, National Center for Atmospheric Research, Boulder, USA) “Vladimir Krasnopolsky has written an important and wonderful book on applications of neural networks to replace complex and expensive computational algorithms within Earth System Science models. He is uniquely qualified to write this book, since he has been a true pioneer with regard to many of these applications. (...) Many other examples of creative emulations will inspire not just readers interested in the Earth Sciences, but any other modeling practitioner (...) to address both theoretical and practical complex problems that may (or will!) arise in a complex system." ” (Prof. Eugenia Kalnay, University of Maryland, USA)
Publisher: Springer Science & Business Media
ISBN: 9400760736
Category : Science
Languages : en
Pages : 205
Book Description
This book brings together a representative set of Earth System Science (ESS) applications of the neural network (NN) technique. It examines a progression of atmospheric and oceanic problems, which, from the mathematical point of view, can be formulated as complex, multidimensional, and nonlinear mappings. It is shown that these problems can be solved utilizing a particular type of NN – the multilayer perceptron (MLP). This type of NN applications covers the majority of NN applications developed in ESSs such as meteorology, oceanography, atmospheric and oceanic satellite remote sensing, numerical weather prediction, and climate studies. The major properties of the mappings and MLP NNs are formulated and discussed. Also, the book presents basic background for each introduced application and provides an extensive set of references. “This is an excellent book to learn how to apply artificial neural network methods to earth system sciences. The author, Dr. Vladimir Krasnopolsky, is a universally recognized master in this field. With his vast knowledge and experience, he carefully guides the reader through a broad variety of problems found in the earth system sciences where neural network methods can be applied fruitfully. (...) The broad range of topics covered in this book ensures that researchers/graduate students from many fields (...) will find it an invaluable guide to neural network methods.” (Prof. William W. Hsieh, University of British Columbia, Vancouver, Canada) “Vladimir Krasnopolsky has been the “founding father” of applying computation intelligence methods to environmental science; (...) Dr. Krasnopolsky has created a masterful exposition of a young, yet maturing field that promises to advance a deeper understanding of best modeling practices in environmental science.” (Dr. Sue Ellen Haupt, National Center for Atmospheric Research, Boulder, USA) “Vladimir Krasnopolsky has written an important and wonderful book on applications of neural networks to replace complex and expensive computational algorithms within Earth System Science models. He is uniquely qualified to write this book, since he has been a true pioneer with regard to many of these applications. (...) Many other examples of creative emulations will inspire not just readers interested in the Earth Sciences, but any other modeling practitioner (...) to address both theoretical and practical complex problems that may (or will!) arise in a complex system." ” (Prof. Eugenia Kalnay, University of Maryland, USA)