Author: Francesco S. Pavone
Publisher: Taylor & Francis
ISBN: 1439849153
Category : Science
Languages : en
Pages : 465
Book Description
Second-harmonic generation (SHG) microscopy has shown great promise for imaging live cells and tissues, with applications in basic science, medical research, and tissue engineering. Second Harmonic Generation Imaging offers a complete guide to this optical modality, from basic principles, instrumentation, methods, and image analysis to biomedical a
Second Harmonic Generation Imaging
Author: Francesco S. Pavone
Publisher: Taylor & Francis
ISBN: 1439849153
Category : Science
Languages : en
Pages : 465
Book Description
Second-harmonic generation (SHG) microscopy has shown great promise for imaging live cells and tissues, with applications in basic science, medical research, and tissue engineering. Second Harmonic Generation Imaging offers a complete guide to this optical modality, from basic principles, instrumentation, methods, and image analysis to biomedical a
Publisher: Taylor & Francis
ISBN: 1439849153
Category : Science
Languages : en
Pages : 465
Book Description
Second-harmonic generation (SHG) microscopy has shown great promise for imaging live cells and tissues, with applications in basic science, medical research, and tissue engineering. Second Harmonic Generation Imaging offers a complete guide to this optical modality, from basic principles, instrumentation, methods, and image analysis to biomedical a
Cell Migration in Three Dimensions
Author: Coert Margadant
Publisher: Springer Nature
ISBN: 1071628879
Category : Science
Languages : en
Pages : 468
Book Description
This detailed collection serves as a unique and excellent collection of state-of-the-art methods and protocols to interrogate cell migration in a wide variety of different contexts and model organisms, as well as advanced image analysis and quantitative assessment of a diverse array of parameters related to cell migration. The book focuses on the cell biology of cell migration, developmental model systems to assess cell migration during morphogenesis, cell migration in cancers and the tumor micro-environment, as well as blood vessel formation and interactions. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Cell Migration in Three Dimensions provides a solid foundation for scientists of different disciplines to investigate cell migration in biological processes. Chapters 7, 12, 16, 17, 19, 22, and 24 are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Publisher: Springer Nature
ISBN: 1071628879
Category : Science
Languages : en
Pages : 468
Book Description
This detailed collection serves as a unique and excellent collection of state-of-the-art methods and protocols to interrogate cell migration in a wide variety of different contexts and model organisms, as well as advanced image analysis and quantitative assessment of a diverse array of parameters related to cell migration. The book focuses on the cell biology of cell migration, developmental model systems to assess cell migration during morphogenesis, cell migration in cancers and the tumor micro-environment, as well as blood vessel formation and interactions. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Cell Migration in Three Dimensions provides a solid foundation for scientists of different disciplines to investigate cell migration in biological processes. Chapters 7, 12, 16, 17, 19, 22, and 24 are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Cell Movement
Author: Magdalena Stolarska
Publisher: Springer
ISBN: 9783319968414
Category : Mathematics
Languages : en
Pages : 276
Book Description
This book contains a collection of original research articles and review articles that describe novel mathematical modeling techniques and the application of those techniques to models of cell motility in a variety of contexts. The aim is to highlight some of the recent mathematical work geared at understanding the coordination of intracellular processes involved in the movement of cells. This collection will benefit researchers interested in cell motility as well graduate students taking a topics course in this area.
Publisher: Springer
ISBN: 9783319968414
Category : Mathematics
Languages : en
Pages : 276
Book Description
This book contains a collection of original research articles and review articles that describe novel mathematical modeling techniques and the application of those techniques to models of cell motility in a variety of contexts. The aim is to highlight some of the recent mathematical work geared at understanding the coordination of intracellular processes involved in the movement of cells. This collection will benefit researchers interested in cell motility as well graduate students taking a topics course in this area.
Multiscale Modeling of Cancer
Author: Vittorio Cristini
Publisher: Cambridge University Press
ISBN: 1139491504
Category : Technology & Engineering
Languages : en
Pages : 299
Book Description
Mathematical modeling, analysis and simulation are set to play crucial roles in explaining tumor behavior, and the uncontrolled growth of cancer cells over multiple time and spatial scales. This book, the first to integrate state-of-the-art numerical techniques with experimental data, provides an in-depth assessment of tumor cell modeling at multiple scales. The first part of the text presents a detailed biological background with an examination of single-phase and multi-phase continuum tumor modeling, discrete cell modeling, and hybrid continuum-discrete modeling. In the final two chapters, the authors guide the reader through problem-based illustrations and case studies of brain and breast cancer, to demonstrate the future potential of modeling in cancer research. This book has wide interdisciplinary appeal and is a valuable resource for mathematical biologists, biomedical engineers and clinical cancer research communities wishing to understand this emerging field.
Publisher: Cambridge University Press
ISBN: 1139491504
Category : Technology & Engineering
Languages : en
Pages : 299
Book Description
Mathematical modeling, analysis and simulation are set to play crucial roles in explaining tumor behavior, and the uncontrolled growth of cancer cells over multiple time and spatial scales. This book, the first to integrate state-of-the-art numerical techniques with experimental data, provides an in-depth assessment of tumor cell modeling at multiple scales. The first part of the text presents a detailed biological background with an examination of single-phase and multi-phase continuum tumor modeling, discrete cell modeling, and hybrid continuum-discrete modeling. In the final two chapters, the authors guide the reader through problem-based illustrations and case studies of brain and breast cancer, to demonstrate the future potential of modeling in cancer research. This book has wide interdisciplinary appeal and is a valuable resource for mathematical biologists, biomedical engineers and clinical cancer research communities wishing to understand this emerging field.
Cell Movement in Health and Disease
Author: Michael Schnoor
Publisher: Academic Press
ISBN: 0323901964
Category : Science
Languages : en
Pages : 386
Book Description
Cell Movement in Health and Disease brings the several scientific domains related to the phenomena together, establishing a consistent foundation for researchers in this exciting field. The content is presented in four main section. The first explores the foundations of Cell Movement, including overviews of cellular structure, signaling, physiology, motion-related proteins, and the interface with the cellular membrane. The second part covers the biological aspects of cellular movement, starting with chemical and mechanical sensing, describing the types of cell movement, mechanics at cell level, cell physiology, collective behavior, and the connections with the extracellular matrix. The following chapters provide an overview of the molecular machinery involved and cell-type specific movement. The third part of the book is dedicated to the translational aspects of cell movement, highlighting the key conditions associated with cell movement dysfunction, like cell invasion in cancer, wound healing, developmental issues, neurological dysfunctions, and immune response. The final part of the book covers key methods and modeling tools for cell movement research, including predictive mathematical models, in vitro and in vivo methods, biophysical and bioinformatics tools. Cell Movement in Health and Disease is the ideal reference for scientists from different backgrounds converging to expand the understanding of this key cellular process. Cellular and molecular biologists will gain a better understanding of the physical principals operating at cellular level while biophysicist and biomedical engineers will benefit from the solid biology foundation provided by the book. - Combines Biology, Physics and Modeling of cellular movement in one single source - Updated with the current understanding of the field - Includes key research methods for cell movement investigation - Cover translational aspects of cellular movement
Publisher: Academic Press
ISBN: 0323901964
Category : Science
Languages : en
Pages : 386
Book Description
Cell Movement in Health and Disease brings the several scientific domains related to the phenomena together, establishing a consistent foundation for researchers in this exciting field. The content is presented in four main section. The first explores the foundations of Cell Movement, including overviews of cellular structure, signaling, physiology, motion-related proteins, and the interface with the cellular membrane. The second part covers the biological aspects of cellular movement, starting with chemical and mechanical sensing, describing the types of cell movement, mechanics at cell level, cell physiology, collective behavior, and the connections with the extracellular matrix. The following chapters provide an overview of the molecular machinery involved and cell-type specific movement. The third part of the book is dedicated to the translational aspects of cell movement, highlighting the key conditions associated with cell movement dysfunction, like cell invasion in cancer, wound healing, developmental issues, neurological dysfunctions, and immune response. The final part of the book covers key methods and modeling tools for cell movement research, including predictive mathematical models, in vitro and in vivo methods, biophysical and bioinformatics tools. Cell Movement in Health and Disease is the ideal reference for scientists from different backgrounds converging to expand the understanding of this key cellular process. Cellular and molecular biologists will gain a better understanding of the physical principals operating at cellular level while biophysicist and biomedical engineers will benefit from the solid biology foundation provided by the book. - Combines Biology, Physics and Modeling of cellular movement in one single source - Updated with the current understanding of the field - Includes key research methods for cell movement investigation - Cover translational aspects of cellular movement
Biology and Engineering of Stem Cell Niches
Author: Ajaykumar Vishwakarma
Publisher: Academic Press
ISBN: 0128027568
Category : Science
Languages : en
Pages : 644
Book Description
Biology and Engineering of Stem Cell Niches covers a wide spectrum of research and current knowledge on embryonic and adult stem cell niches, focusing on the understanding of stem cell niche molecules and signaling mechanisms, including cell-cell/cell-matrix interactions. The book comprehensively reviews factors regulating stem cell behavior and the corresponding approaches for understanding the subsequent effect of providing the proper matrix molecules, mechanical cues, and/or chemical cues. It encompasses a variety of tools and techniques for developing biomaterials-based methods to model synthetic stem cell niches in vivo, or to enhance and direct stem cell fate in vitro. A final section of the book discusses stem cell niche bioengineering strategies and current advances in each tissue type. - Includes the importance of Cell-Cell and Cell Matrix Interactions in each specific tissue and system - Authored and edited by authorities in this emerging and multidisciplinary field - Includes valuable links to 5-10 minute YouTube© author videos that describe main points
Publisher: Academic Press
ISBN: 0128027568
Category : Science
Languages : en
Pages : 644
Book Description
Biology and Engineering of Stem Cell Niches covers a wide spectrum of research and current knowledge on embryonic and adult stem cell niches, focusing on the understanding of stem cell niche molecules and signaling mechanisms, including cell-cell/cell-matrix interactions. The book comprehensively reviews factors regulating stem cell behavior and the corresponding approaches for understanding the subsequent effect of providing the proper matrix molecules, mechanical cues, and/or chemical cues. It encompasses a variety of tools and techniques for developing biomaterials-based methods to model synthetic stem cell niches in vivo, or to enhance and direct stem cell fate in vitro. A final section of the book discusses stem cell niche bioengineering strategies and current advances in each tissue type. - Includes the importance of Cell-Cell and Cell Matrix Interactions in each specific tissue and system - Authored and edited by authorities in this emerging and multidisciplinary field - Includes valuable links to 5-10 minute YouTube© author videos that describe main points
Cellular Migration and Formation of Neuronal Connections
Author:
Publisher: Academic Press
ISBN: 0123973473
Category : Science
Languages : en
Pages : 1081
Book Description
The genetic, molecular, and cellular mechanisms of neural development are essential for understanding evolution and disorders of neural systems. Recent advances in genetic, molecular, and cell biological methods have generated a massive increase in new information, but there is a paucity of comprehensive and up-to-date syntheses, references, and historical perspectives on this important subject. The Comprehensive Developmental Neuroscience series is designed to fill this gap, offering the most thorough coverage of this field on the market today and addressing all aspects of how the nervous system and its components develop. Particular attention is paid to the effects of abnormal development and on new psychiatric/neurological treatments being developed based on our increased understanding of developmental mechanisms. Each volume in the series consists of review style articles that average 15-20pp and feature numerous illustrations and full references. Volume 2 offers 56 high level articles devoted mainly to Formation of Axons and Dendrites, Migration, Synaptogenesis, Developmental Sequences in the Maturation of Intrinsic and Synapse Driven Patterns. - Series offers 144 articles for 2904 full color pages addressing ways in which the nervous system and its components develop - Features leading experts in various subfields as Section Editors and article Authors - All articles peer reviewed by Section Editors to ensure accuracy, thoroughness, and scholarship - Volume 2 sections include coverage of mechanisms which regulate: the formation of axons and dendrites, cell migration, synapse formation and maintenance during development, and neural activity, from cell-intrinsic maturation to early correlated patterns of activity
Publisher: Academic Press
ISBN: 0123973473
Category : Science
Languages : en
Pages : 1081
Book Description
The genetic, molecular, and cellular mechanisms of neural development are essential for understanding evolution and disorders of neural systems. Recent advances in genetic, molecular, and cell biological methods have generated a massive increase in new information, but there is a paucity of comprehensive and up-to-date syntheses, references, and historical perspectives on this important subject. The Comprehensive Developmental Neuroscience series is designed to fill this gap, offering the most thorough coverage of this field on the market today and addressing all aspects of how the nervous system and its components develop. Particular attention is paid to the effects of abnormal development and on new psychiatric/neurological treatments being developed based on our increased understanding of developmental mechanisms. Each volume in the series consists of review style articles that average 15-20pp and feature numerous illustrations and full references. Volume 2 offers 56 high level articles devoted mainly to Formation of Axons and Dendrites, Migration, Synaptogenesis, Developmental Sequences in the Maturation of Intrinsic and Synapse Driven Patterns. - Series offers 144 articles for 2904 full color pages addressing ways in which the nervous system and its components develop - Features leading experts in various subfields as Section Editors and article Authors - All articles peer reviewed by Section Editors to ensure accuracy, thoroughness, and scholarship - Volume 2 sections include coverage of mechanisms which regulate: the formation of axons and dendrites, cell migration, synapse formation and maintenance during development, and neural activity, from cell-intrinsic maturation to early correlated patterns of activity
Mechanobiology of Cell-Cell and Cell-Matrix Interactions
Author: A. Wagoner Johnson
Publisher: Springer Science & Business Media
ISBN: 1441980830
Category : Technology & Engineering
Languages : en
Pages : 329
Book Description
Mechanobiology of Cell-Matrix Interactions focuses on characterization and modeling of interactions between cells and their local extracellular environment, exploring how these interactions may mediate cell behavior. Studies of cell-matrix interactions rely on integrating engineering, (molecular and cellular) biology, and imaging disciplines. Recent advances in the field have begun to unravel our understanding of how cells gather information from their surrounding environment, and how they interrogate such information during the cell fate decision making process. Topics include adhesive and integrin-ligand interactions; extracellular influences on cell biology and behavior; cooperative mechanisms of cell-cell and cell-matrix interactions; the mechanobiology of pathological processes; (multi-scale) modeling approaches to describe the complexity or cell-matrix interactions; and quantitative methods required for such experimental and modeling studies.
Publisher: Springer Science & Business Media
ISBN: 1441980830
Category : Technology & Engineering
Languages : en
Pages : 329
Book Description
Mechanobiology of Cell-Matrix Interactions focuses on characterization and modeling of interactions between cells and their local extracellular environment, exploring how these interactions may mediate cell behavior. Studies of cell-matrix interactions rely on integrating engineering, (molecular and cellular) biology, and imaging disciplines. Recent advances in the field have begun to unravel our understanding of how cells gather information from their surrounding environment, and how they interrogate such information during the cell fate decision making process. Topics include adhesive and integrin-ligand interactions; extracellular influences on cell biology and behavior; cooperative mechanisms of cell-cell and cell-matrix interactions; the mechanobiology of pathological processes; (multi-scale) modeling approaches to describe the complexity or cell-matrix interactions; and quantitative methods required for such experimental and modeling studies.
A Three-dimensional Method-of-characteristics Solute- Transport Model (MOC3D)
Author: Leonard F. Konikow
Publisher:
ISBN:
Category : Diffusion in hydrology
Languages : en
Pages : 102
Book Description
Publisher:
ISBN:
Category : Diffusion in hydrology
Languages : en
Pages : 102
Book Description
Cell and Matrix Mechanics
Author: Roland Kaunas
Publisher: CRC Press
ISBN: 9781138073333
Category :
Languages : en
Pages : 376
Book Description
Explores a Range of Multiscale Biomechanics/Mechanobiology Concepts Cell and Matrix Mechanics presents cutting-edge research at the molecular, cellular, and tissue levels in the field of cell mechanics. This book involves key experts in the field, and covers crucial areas of cell and tissue mechanics, with an emphasis on the roles of mechanical forces in cell-matrix interactions. Providing material in each chapter that builds on the previous chapters, it effectively integrates length scales and contains, for each length scale, key experimental observations and corresponding quantitative theoretical models. Summarizes the Three Hierarchical Levels of Cell Mechanics The book contains 14 chapters and is organized into three sections. The first section focuses on the molecular level, the second section details mechanics at the cellular level, and the third section explores cellular mechanics at the tissue level. The authors offer a thorough description of the roles of mechanical forces in cell and tissue biology, and include specific examples. They incorporate descriptions of associated theoretical models, and provide the data and modeling framework needed for a multi-scale analysis. In addition, they highlight the pioneering studies in cell-matrix mechanics by Albert K. Harris. The topics covered include: The passive and active mechanical properties of cytoskeletal polymers and associated motor proteins along with the behavior of polymer networks The mechanical properties of the cell membrane, with an emphasis on membrane protein activation caused by membrane forces The hierarchical organization of collagen fibrils, revealing that a delicate balance exists between specific and nonspecific interactions to result in a structure with semicrystalline order as well as loose associations The roles of matrix mechanical properties on cell adhesion and function along with different mechanical mechanisms of cell-cell interactions The effects of mechanical loading on cell cytoskeletal remodeling, summarizing various modeling approaches that explain possible mechanisms regulating the alignment of actin stress fibers in response to stretching The mechanical testing of cell-populated collagen matrices, along with theory relating the passive and active mechanical properties of the engineered tissues Cell migration behavior in 3-D matrices and in collective cell motility The role of mechanics in cartilage development The roles of both cellular and external forces on tissue morphogenesis The roles of mechanical forces on tumor growth and cancer metastasis Cell and Matrix Mechanics succinctly and systematically explains the roles of mechanical forces in cell-matrix biology. Practitioners and researchers in engineering and physics, as well as graduate students in biomedical engineering and mechanical engineering related to mechanobiology, can benefit from this work.
Publisher: CRC Press
ISBN: 9781138073333
Category :
Languages : en
Pages : 376
Book Description
Explores a Range of Multiscale Biomechanics/Mechanobiology Concepts Cell and Matrix Mechanics presents cutting-edge research at the molecular, cellular, and tissue levels in the field of cell mechanics. This book involves key experts in the field, and covers crucial areas of cell and tissue mechanics, with an emphasis on the roles of mechanical forces in cell-matrix interactions. Providing material in each chapter that builds on the previous chapters, it effectively integrates length scales and contains, for each length scale, key experimental observations and corresponding quantitative theoretical models. Summarizes the Three Hierarchical Levels of Cell Mechanics The book contains 14 chapters and is organized into three sections. The first section focuses on the molecular level, the second section details mechanics at the cellular level, and the third section explores cellular mechanics at the tissue level. The authors offer a thorough description of the roles of mechanical forces in cell and tissue biology, and include specific examples. They incorporate descriptions of associated theoretical models, and provide the data and modeling framework needed for a multi-scale analysis. In addition, they highlight the pioneering studies in cell-matrix mechanics by Albert K. Harris. The topics covered include: The passive and active mechanical properties of cytoskeletal polymers and associated motor proteins along with the behavior of polymer networks The mechanical properties of the cell membrane, with an emphasis on membrane protein activation caused by membrane forces The hierarchical organization of collagen fibrils, revealing that a delicate balance exists between specific and nonspecific interactions to result in a structure with semicrystalline order as well as loose associations The roles of matrix mechanical properties on cell adhesion and function along with different mechanical mechanisms of cell-cell interactions The effects of mechanical loading on cell cytoskeletal remodeling, summarizing various modeling approaches that explain possible mechanisms regulating the alignment of actin stress fibers in response to stretching The mechanical testing of cell-populated collagen matrices, along with theory relating the passive and active mechanical properties of the engineered tissues Cell migration behavior in 3-D matrices and in collective cell motility The role of mechanics in cartilage development The roles of both cellular and external forces on tissue morphogenesis The roles of mechanical forces on tumor growth and cancer metastasis Cell and Matrix Mechanics succinctly and systematically explains the roles of mechanical forces in cell-matrix biology. Practitioners and researchers in engineering and physics, as well as graduate students in biomedical engineering and mechanical engineering related to mechanobiology, can benefit from this work.