Author: Peter Spirtes
Publisher: Springer Science & Business Media
ISBN: 1461227488
Category : Mathematics
Languages : en
Pages : 551
Book Description
This book is intended for anyone, regardless of discipline, who is interested in the use of statistical methods to help obtain scientific explanations or to predict the outcomes of actions, experiments or policies. Much of G. Udny Yule's work illustrates a vision of statistics whose goal is to investigate when and how causal influences may be reliably inferred, and their comparative strengths estimated, from statistical samples. Yule's enterprise has been largely replaced by Ronald Fisher's conception, in which there is a fundamental cleavage between experimental and non experimental inquiry, and statistics is largely unable to aid in causal inference without randomized experimental trials. Every now and then members of the statistical community express misgivings about this turn of events, and, in our view, rightly so. Our work represents a return to something like Yule's conception of the enterprise of theoretical statistics and its potential practical benefits. If intellectual history in the 20th century had gone otherwise, there might have been a discipline to which our work belongs. As it happens, there is not. We develop material that belongs to statistics, to computer science, and to philosophy; the combination may not be entirely satisfactory for specialists in any of these subjects. We hope it is nonetheless satisfactory for its purpose.
Causation, Prediction, and Search
Author: Peter Spirtes
Publisher: Springer Science & Business Media
ISBN: 1461227488
Category : Mathematics
Languages : en
Pages : 551
Book Description
This book is intended for anyone, regardless of discipline, who is interested in the use of statistical methods to help obtain scientific explanations or to predict the outcomes of actions, experiments or policies. Much of G. Udny Yule's work illustrates a vision of statistics whose goal is to investigate when and how causal influences may be reliably inferred, and their comparative strengths estimated, from statistical samples. Yule's enterprise has been largely replaced by Ronald Fisher's conception, in which there is a fundamental cleavage between experimental and non experimental inquiry, and statistics is largely unable to aid in causal inference without randomized experimental trials. Every now and then members of the statistical community express misgivings about this turn of events, and, in our view, rightly so. Our work represents a return to something like Yule's conception of the enterprise of theoretical statistics and its potential practical benefits. If intellectual history in the 20th century had gone otherwise, there might have been a discipline to which our work belongs. As it happens, there is not. We develop material that belongs to statistics, to computer science, and to philosophy; the combination may not be entirely satisfactory for specialists in any of these subjects. We hope it is nonetheless satisfactory for its purpose.
Publisher: Springer Science & Business Media
ISBN: 1461227488
Category : Mathematics
Languages : en
Pages : 551
Book Description
This book is intended for anyone, regardless of discipline, who is interested in the use of statistical methods to help obtain scientific explanations or to predict the outcomes of actions, experiments or policies. Much of G. Udny Yule's work illustrates a vision of statistics whose goal is to investigate when and how causal influences may be reliably inferred, and their comparative strengths estimated, from statistical samples. Yule's enterprise has been largely replaced by Ronald Fisher's conception, in which there is a fundamental cleavage between experimental and non experimental inquiry, and statistics is largely unable to aid in causal inference without randomized experimental trials. Every now and then members of the statistical community express misgivings about this turn of events, and, in our view, rightly so. Our work represents a return to something like Yule's conception of the enterprise of theoretical statistics and its potential practical benefits. If intellectual history in the 20th century had gone otherwise, there might have been a discipline to which our work belongs. As it happens, there is not. We develop material that belongs to statistics, to computer science, and to philosophy; the combination may not be entirely satisfactory for specialists in any of these subjects. We hope it is nonetheless satisfactory for its purpose.
Computation, Causation, and Discovery
Author: Clark N. Glymour
Publisher:
ISBN: 9780262315821
Category : Causation
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9780262315821
Category : Causation
Languages : en
Pages :
Book Description
Discovering Causal Structure
Author: Clark Glymour
Publisher: Academic Press
ISBN: 148326579X
Category : Social Science
Languages : en
Pages : 413
Book Description
Discovering Causal Structure: Artificial Intelligence, Philosophy of Science, and Statistical Modeling provides information pertinent to the fundamental aspects of a computer program called TETRAD. This book discusses the version of the TETRAD program, which is designed to assist in the search for causal explanations of statistical data. or alternative models. This text then examines the notion of applying artificial intelligence methods to problems of statistical model specification. Other chapters consider how the TETRAD program can help to find god alternative models where they exist, and how it can help detect the existence of important neglected variables. This book discusses as well the procedures for specifying a model or models to account for non-experimental or quasi-experimental data. The final chapter presents a description of the format of input files and a description of each command. This book is a valuable resource for social scientists and researchers.
Publisher: Academic Press
ISBN: 148326579X
Category : Social Science
Languages : en
Pages : 413
Book Description
Discovering Causal Structure: Artificial Intelligence, Philosophy of Science, and Statistical Modeling provides information pertinent to the fundamental aspects of a computer program called TETRAD. This book discusses the version of the TETRAD program, which is designed to assist in the search for causal explanations of statistical data. or alternative models. This text then examines the notion of applying artificial intelligence methods to problems of statistical model specification. Other chapters consider how the TETRAD program can help to find god alternative models where they exist, and how it can help detect the existence of important neglected variables. This book discusses as well the procedures for specifying a model or models to account for non-experimental or quasi-experimental data. The final chapter presents a description of the format of input files and a description of each command. This book is a valuable resource for social scientists and researchers.
Elements of Causal Inference
Author: Jonas Peters
Publisher: MIT Press
ISBN: 0262037319
Category : Computers
Languages : en
Pages : 289
Book Description
A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning. The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem. The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.
Publisher: MIT Press
ISBN: 0262037319
Category : Computers
Languages : en
Pages : 289
Book Description
A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning. The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem. The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.
An Introduction to Causal Inference
Author: Judea Pearl
Publisher: Createspace Independent Publishing Platform
ISBN: 9781507894293
Category : Causation
Languages : en
Pages : 0
Book Description
This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. The tools are demonstrated in the analyses of mediation, causes of effects, and probabilities of causation. -- p. 1.
Publisher: Createspace Independent Publishing Platform
ISBN: 9781507894293
Category : Causation
Languages : en
Pages : 0
Book Description
This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. The tools are demonstrated in the analyses of mediation, causes of effects, and probabilities of causation. -- p. 1.
Making Things Happen
Author: James Woodward
Publisher: Oxford University Press
ISBN: 0198035330
Category : Science
Languages : en
Pages : 419
Book Description
In Making Things Happen, James Woodward develops a new and ambitious comprehensive theory of causation and explanation that draws on literature from a variety of disciplines and which applies to a wide variety of claims in science and everyday life. His theory is a manipulationist account, proposing that causal and explanatory relationships are relationships that are potentially exploitable for purposes of manipulation and control. This account has its roots in the commonsense idea that causes are means for bringing about effects; but it also draws on a long tradition of work in experimental design, econometrics, and statistics. Woodward shows how these ideas may be generalized to other areas of science from the social scientific and biomedical contexts for which they were originally designed. He also provides philosophical foundations for the manipulationist approach, drawing out its implications, comparing it with alternative approaches, and defending it from common criticisms. In doing so, he shows how the manipulationist account both illuminates important features of successful causal explanation in the natural and social sciences, and avoids the counterexamples and difficulties that infect alternative approaches, from the deductive-nomological model onwards. Making Things Happen will interest philosophers working in the philosophy of science, the philosophy of social science, and metaphysics, and as well as anyone interested in causation, explanation, and scientific methodology.
Publisher: Oxford University Press
ISBN: 0198035330
Category : Science
Languages : en
Pages : 419
Book Description
In Making Things Happen, James Woodward develops a new and ambitious comprehensive theory of causation and explanation that draws on literature from a variety of disciplines and which applies to a wide variety of claims in science and everyday life. His theory is a manipulationist account, proposing that causal and explanatory relationships are relationships that are potentially exploitable for purposes of manipulation and control. This account has its roots in the commonsense idea that causes are means for bringing about effects; but it also draws on a long tradition of work in experimental design, econometrics, and statistics. Woodward shows how these ideas may be generalized to other areas of science from the social scientific and biomedical contexts for which they were originally designed. He also provides philosophical foundations for the manipulationist approach, drawing out its implications, comparing it with alternative approaches, and defending it from common criticisms. In doing so, he shows how the manipulationist account both illuminates important features of successful causal explanation in the natural and social sciences, and avoids the counterexamples and difficulties that infect alternative approaches, from the deductive-nomological model onwards. Making Things Happen will interest philosophers working in the philosophy of science, the philosophy of social science, and metaphysics, and as well as anyone interested in causation, explanation, and scientific methodology.
Causality, Probability, and Time
Author: Samantha Kleinberg
Publisher: Cambridge University Press
ISBN: 1107026482
Category : Computers
Languages : en
Pages : 269
Book Description
Presents a new approach to causal inference and explanation, addressing both the timing and complexity of relationships.
Publisher: Cambridge University Press
ISBN: 1107026482
Category : Computers
Languages : en
Pages : 269
Book Description
Presents a new approach to causal inference and explanation, addressing both the timing and complexity of relationships.
Causation in Science
Author: Yemima Ben-Menahem
Publisher: Princeton University Press
ISBN: 1400889294
Category : Science
Languages : en
Pages : 221
Book Description
This book explores the role of causal constraints in science, shifting our attention from causal relations between individual events--the focus of most philosophical treatments of causation—to a broad family of concepts and principles generating constraints on possible change. Yemima Ben-Menahem looks at determinism, locality, stability, symmetry principles, conservation laws, and the principle of least action—causal constraints that serve to distinguish events and processes that our best scientific theories mandate or allow from those they rule out. Ben-Menahem's approach reveals that causation is just as relevant to explaining why certain events fail to occur as it is to explaining events that do occur. She investigates the conceptual differences between, and interrelations of, members of the causal family, thereby clarifying problems at the heart of the philosophy of science. Ben-Menahem argues that the distinction between determinism and stability is pertinent to the philosophy of history and the foundations of statistical mechanics, and that the interplay of determinism and locality is crucial for understanding quantum mechanics. Providing historical perspective, she traces the causal constraints of contemporary science to traditional intuitions about causation, and demonstrates how the teleological appearance of some constraints is explained away in current scientific theories such as quantum mechanics. Causation in Science represents a bold challenge to both causal eliminativism and causal reductionism—the notions that causation has no place in science and that higher-level causal claims are reducible to the causal claims of fundamental physics.
Publisher: Princeton University Press
ISBN: 1400889294
Category : Science
Languages : en
Pages : 221
Book Description
This book explores the role of causal constraints in science, shifting our attention from causal relations between individual events--the focus of most philosophical treatments of causation—to a broad family of concepts and principles generating constraints on possible change. Yemima Ben-Menahem looks at determinism, locality, stability, symmetry principles, conservation laws, and the principle of least action—causal constraints that serve to distinguish events and processes that our best scientific theories mandate or allow from those they rule out. Ben-Menahem's approach reveals that causation is just as relevant to explaining why certain events fail to occur as it is to explaining events that do occur. She investigates the conceptual differences between, and interrelations of, members of the causal family, thereby clarifying problems at the heart of the philosophy of science. Ben-Menahem argues that the distinction between determinism and stability is pertinent to the philosophy of history and the foundations of statistical mechanics, and that the interplay of determinism and locality is crucial for understanding quantum mechanics. Providing historical perspective, she traces the causal constraints of contemporary science to traditional intuitions about causation, and demonstrates how the teleological appearance of some constraints is explained away in current scientific theories such as quantum mechanics. Causation in Science represents a bold challenge to both causal eliminativism and causal reductionism—the notions that causation has no place in science and that higher-level causal claims are reducible to the causal claims of fundamental physics.
Causal Learning
Author:
Publisher: Academic Press
ISBN: 008086385X
Category : Psychology
Languages : en
Pages : 457
Book Description
The Psychology of Learning and Motivation publishes empirical and theoretical contributions in cognitive and experimental psychology, ranging from classical and instrumental conditions to complex learning and problem solving. This guest-edited special volume is devoted to current research and discussion on associative versus cognitive accounts of learning. Written by major investigators in the field, topics include all aspects of causal learning in an open forum in which different approaches are brought together. - Up-to-date review of the literature - Discusses recent controversies - Presents major advances in understanding causal learning - Synthesizes contrasting approaches - Includes important empirical contributions - Written by leading researchers in the field
Publisher: Academic Press
ISBN: 008086385X
Category : Psychology
Languages : en
Pages : 457
Book Description
The Psychology of Learning and Motivation publishes empirical and theoretical contributions in cognitive and experimental psychology, ranging from classical and instrumental conditions to complex learning and problem solving. This guest-edited special volume is devoted to current research and discussion on associative versus cognitive accounts of learning. Written by major investigators in the field, topics include all aspects of causal learning in an open forum in which different approaches are brought together. - Up-to-date review of the literature - Discusses recent controversies - Presents major advances in understanding causal learning - Synthesizes contrasting approaches - Includes important empirical contributions - Written by leading researchers in the field
Causal Inference in Statistics
Author: Judea Pearl
Publisher: John Wiley & Sons
ISBN: 1119186862
Category : Mathematics
Languages : en
Pages : 162
Book Description
CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as "Does this treatment harm or help patients?" But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.
Publisher: John Wiley & Sons
ISBN: 1119186862
Category : Mathematics
Languages : en
Pages : 162
Book Description
CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as "Does this treatment harm or help patients?" But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.