Author: Catherine Bénéteau:
Publisher: American Mathematical Soc.
ISBN: 1470423057
Category : Mathematics
Languages : en
Pages : 230
Book Description
This volume contains the Proceedings of the Conference on Completeness Problems, Carleson Measures, and Spaces of Analytic Functions, held from June 29–July 3, 2015, at the Institut Mittag-Leffler, Djursholm, Sweden. The conference brought together experienced researchers and promising young mathematicians from many countries to discuss recent progress made in function theory, model spaces, completeness problems, and Carleson measures. This volume contains articles covering cutting-edge research questions, as well as longer survey papers and a report on the problem session that contains a collection of attractive open problems in complex and harmonic analysis.
Catherine Beneteau, Alberto A. Condori, Constanze Liaw, William T. Ross, and Alan A. Sola
Author: Catherine Bénéteau:
Publisher: American Mathematical Soc.
ISBN: 1470423057
Category : Mathematics
Languages : en
Pages : 230
Book Description
This volume contains the Proceedings of the Conference on Completeness Problems, Carleson Measures, and Spaces of Analytic Functions, held from June 29–July 3, 2015, at the Institut Mittag-Leffler, Djursholm, Sweden. The conference brought together experienced researchers and promising young mathematicians from many countries to discuss recent progress made in function theory, model spaces, completeness problems, and Carleson measures. This volume contains articles covering cutting-edge research questions, as well as longer survey papers and a report on the problem session that contains a collection of attractive open problems in complex and harmonic analysis.
Publisher: American Mathematical Soc.
ISBN: 1470423057
Category : Mathematics
Languages : en
Pages : 230
Book Description
This volume contains the Proceedings of the Conference on Completeness Problems, Carleson Measures, and Spaces of Analytic Functions, held from June 29–July 3, 2015, at the Institut Mittag-Leffler, Djursholm, Sweden. The conference brought together experienced researchers and promising young mathematicians from many countries to discuss recent progress made in function theory, model spaces, completeness problems, and Carleson measures. This volume contains articles covering cutting-edge research questions, as well as longer survey papers and a report on the problem session that contains a collection of attractive open problems in complex and harmonic analysis.
Tensor Categories
Author: Pavel Etingof
Publisher: American Mathematical Soc.
ISBN: 1470434415
Category : Mathematics
Languages : en
Pages : 362
Book Description
Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.
Publisher: American Mathematical Soc.
ISBN: 1470434415
Category : Mathematics
Languages : en
Pages : 362
Book Description
Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.
Elementary Applied Topology
Author: Robert W. Ghrist
Publisher: Createspace Independent Publishing Platform
ISBN: 9781502880857
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book gives an introduction to the mathematics and applications comprising the new field of applied topology. The elements of this subject are surveyed in the context of applications drawn from the biological, economic, engineering, physical, and statistical sciences.
Publisher: Createspace Independent Publishing Platform
ISBN: 9781502880857
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book gives an introduction to the mathematics and applications comprising the new field of applied topology. The elements of this subject are surveyed in the context of applications drawn from the biological, economic, engineering, physical, and statistical sciences.
The Mathematical Education of Teachers
Author: Conference Board of the Mathematical Sciences
Publisher: American Mathematical Soc.
ISBN: 9780821828991
Category : Education
Languages : en
Pages : 164
Book Description
Now is a time of great interest in mathematics education. Student performance, curriculum, and teacher education are the subjects of much scrutiny and debate. Studies on the mathematical knowledge of prospective and practicing U. S. teachers suggest ways to improve their mathematical educations. It is often assumed that because the topics covered in K-12 mathematics are so basic, they should be easy to teach. However, research in mathematics education has shown that to teach well,substantial mathematical understanding is necessary--even to teach whole-number arithmetic. Prospective teachers need a solid understanding of mathematics so that they can teach it as a coherent, reasoned activity and communicate its elegance and power. This volume gathers and reports current thinkingon curriculum and policy issues affecting the mathematical education of teachers. It considers two general themes: (1) the intellectual substance in school mathematics; and (2) the special nature of the mathematical knowledge needed for teaching. The underlying study was funded by a grant from the U.S. Department of Education. The mathematical knowledge needed for teaching is quite different from that required by students pursuing other mathematics-related professions. Material here is gearedtoward stimulating efforts on individual campuses to improve programs for prospective teachers. This report contains general recommendations for all grades and extensive discussions of the specific mathematical knowledge required for teaching elementary, middle, and high-school grades, respectively.It is also designed to marshal efforts in the mathematical sciences community to back important national initiatives to improve mathematics education and to expand professional development opportunities. The book will be an important resource for mathematics faculty and other parties involved in the mathematical education of teachers. Information for our distributors: This series is published in cooperation with the Mathematical Association of America.
Publisher: American Mathematical Soc.
ISBN: 9780821828991
Category : Education
Languages : en
Pages : 164
Book Description
Now is a time of great interest in mathematics education. Student performance, curriculum, and teacher education are the subjects of much scrutiny and debate. Studies on the mathematical knowledge of prospective and practicing U. S. teachers suggest ways to improve their mathematical educations. It is often assumed that because the topics covered in K-12 mathematics are so basic, they should be easy to teach. However, research in mathematics education has shown that to teach well,substantial mathematical understanding is necessary--even to teach whole-number arithmetic. Prospective teachers need a solid understanding of mathematics so that they can teach it as a coherent, reasoned activity and communicate its elegance and power. This volume gathers and reports current thinkingon curriculum and policy issues affecting the mathematical education of teachers. It considers two general themes: (1) the intellectual substance in school mathematics; and (2) the special nature of the mathematical knowledge needed for teaching. The underlying study was funded by a grant from the U.S. Department of Education. The mathematical knowledge needed for teaching is quite different from that required by students pursuing other mathematics-related professions. Material here is gearedtoward stimulating efforts on individual campuses to improve programs for prospective teachers. This report contains general recommendations for all grades and extensive discussions of the specific mathematical knowledge required for teaching elementary, middle, and high-school grades, respectively.It is also designed to marshal efforts in the mathematical sciences community to back important national initiatives to improve mathematics education and to expand professional development opportunities. The book will be an important resource for mathematics faculty and other parties involved in the mathematical education of teachers. Information for our distributors: This series is published in cooperation with the Mathematical Association of America.
Newton Methods
Author: Ioannis K. Argyros
Publisher: Nova Publishers
ISBN: 9781594540523
Category : Mathematics
Languages : en
Pages : 422
Book Description
This self-contained treatment offers a contemporary and systematic development of the theory and application of Newton methods, which are undoubtedly the most effective tools for solving equations appearing in computational sciences. Its focal point resides in an exhaustive analysis of the convergence properties of several Newton variants used in connection to specific real life problems originated from astrophysics, engineering, mathematical economics and other applied areas. What distinguishes this book from others is the fact that the weak convergence conditions inaugurated here allow for a wider applicability of Newton methods; finer error bounds on the distances involved, and a more precise information on the location of the solution. These factors make this book ideal for researchers, practitioners and students.
Publisher: Nova Publishers
ISBN: 9781594540523
Category : Mathematics
Languages : en
Pages : 422
Book Description
This self-contained treatment offers a contemporary and systematic development of the theory and application of Newton methods, which are undoubtedly the most effective tools for solving equations appearing in computational sciences. Its focal point resides in an exhaustive analysis of the convergence properties of several Newton variants used in connection to specific real life problems originated from astrophysics, engineering, mathematical economics and other applied areas. What distinguishes this book from others is the fact that the weak convergence conditions inaugurated here allow for a wider applicability of Newton methods; finer error bounds on the distances involved, and a more precise information on the location of the solution. These factors make this book ideal for researchers, practitioners and students.
Finite Frames
Author: Peter G. Casazza
Publisher: Springer Science & Business Media
ISBN: 0817683739
Category : Mathematics
Languages : en
Pages : 492
Book Description
Hilbert space frames have long served as a valuable tool for signal and image processing due to their resilience to additive noise, quantization, and erasures, as well as their ability to capture valuable signal characteristics. More recently, finite frame theory has grown into an important research topic in its own right, with a myriad of applications to pure and applied mathematics, engineering, computer science, and other areas. The number of research publications, conferences, and workshops on this topic has increased dramatically over the past few years, but no survey paper or monograph has yet appeared on the subject. Edited by two of the leading experts in the field, Finite Frames aims to fill this void in the literature by providing a comprehensive, systematic study of finite frame theory and applications. With carefully selected contributions written by highly experienced researchers, it covers topics including: * Finite Frame Constructions; * Optimal Erasure Resilient Frames; * Quantization of Finite Frames; * Finite Frames and Compressed Sensing; * Group and Gabor Frames; * Fusion Frames. Despite the variety of its chapters' source and content, the book's notation and terminology are unified throughout and provide a definitive picture of the current state of frame theory. With a broad range of applications and a clear, full presentation, this book is a highly valuable resource for graduate students and researchers across disciplines such as applied harmonic analysis, electrical engineering, quantum computing, medicine, and more. It is designed to be used as a supplemental textbook, self-study guide, or reference book.
Publisher: Springer Science & Business Media
ISBN: 0817683739
Category : Mathematics
Languages : en
Pages : 492
Book Description
Hilbert space frames have long served as a valuable tool for signal and image processing due to their resilience to additive noise, quantization, and erasures, as well as their ability to capture valuable signal characteristics. More recently, finite frame theory has grown into an important research topic in its own right, with a myriad of applications to pure and applied mathematics, engineering, computer science, and other areas. The number of research publications, conferences, and workshops on this topic has increased dramatically over the past few years, but no survey paper or monograph has yet appeared on the subject. Edited by two of the leading experts in the field, Finite Frames aims to fill this void in the literature by providing a comprehensive, systematic study of finite frame theory and applications. With carefully selected contributions written by highly experienced researchers, it covers topics including: * Finite Frame Constructions; * Optimal Erasure Resilient Frames; * Quantization of Finite Frames; * Finite Frames and Compressed Sensing; * Group and Gabor Frames; * Fusion Frames. Despite the variety of its chapters' source and content, the book's notation and terminology are unified throughout and provide a definitive picture of the current state of frame theory. With a broad range of applications and a clear, full presentation, this book is a highly valuable resource for graduate students and researchers across disciplines such as applied harmonic analysis, electrical engineering, quantum computing, medicine, and more. It is designed to be used as a supplemental textbook, self-study guide, or reference book.
Mathematical Questions and Solutions
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 198
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 198
Book Description
Elements of Geometry
Author: Euclid
Publisher:
ISBN:
Category : Geometry
Languages : en
Pages : 108
Book Description
"One of the more sought-after books designed by Bruce Rogers. Euclid's diagrams have long been problematic typographically. Rogers' solutions are realized with characteristic elegance and restraint." -- Description from Ursus Books.
Publisher:
ISBN:
Category : Geometry
Languages : en
Pages : 108
Book Description
"One of the more sought-after books designed by Bruce Rogers. Euclid's diagrams have long been problematic typographically. Rogers' solutions are realized with characteristic elegance and restraint." -- Description from Ursus Books.
Quantitative Literacy
Author: Bernard L. Madison
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 280
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 280
Book Description
Random Growth Models
Author: Michael Damron
Publisher: American Mathematical Soc.
ISBN: 1470435535
Category : Mathematics
Languages : en
Pages : 274
Book Description
The study of random growth models began in probability theory about 50 years ago, and today this area occupies a central place in the subject. The considerable challenges posed by these models have spurred the development of innovative probability theory and opened up connections with several other parts of mathematics, such as partial differential equations, integrable systems, and combinatorics. These models also have applications to fields such as computer science, biology, and physics. This volume is based on lectures delivered at the 2017 AMS Short Course “Random Growth Models”, held January 2–3, 2017 in Atlanta, GA. The articles in this book give an introduction to the most-studied models; namely, first- and last-passage percolation, the Eden model of cell growth, and particle systems, focusing on the main research questions and leading up to the celebrated Kardar-Parisi-Zhang equation. Topics covered include asymptotic properties of infection times, limiting shape results, fluctuation bounds, and geometrical properties of geodesics, which are optimal paths for growth.
Publisher: American Mathematical Soc.
ISBN: 1470435535
Category : Mathematics
Languages : en
Pages : 274
Book Description
The study of random growth models began in probability theory about 50 years ago, and today this area occupies a central place in the subject. The considerable challenges posed by these models have spurred the development of innovative probability theory and opened up connections with several other parts of mathematics, such as partial differential equations, integrable systems, and combinatorics. These models also have applications to fields such as computer science, biology, and physics. This volume is based on lectures delivered at the 2017 AMS Short Course “Random Growth Models”, held January 2–3, 2017 in Atlanta, GA. The articles in this book give an introduction to the most-studied models; namely, first- and last-passage percolation, the Eden model of cell growth, and particle systems, focusing on the main research questions and leading up to the celebrated Kardar-Parisi-Zhang equation. Topics covered include asymptotic properties of infection times, limiting shape results, fluctuation bounds, and geometrical properties of geodesics, which are optimal paths for growth.