Categories of Operator Modules (Morita Equivalence and Projective Modules)

Categories of Operator Modules (Morita Equivalence and Projective Modules) PDF Author: David P. Blecher
Publisher: American Mathematical Soc.
ISBN: 082181916X
Category : Mathematics
Languages : en
Pages : 109

Get Book Here

Book Description
We employ recent advances in the theory of operator spaces, also known as quantized functional analysis, to provide a context in which one can compare categories of modules over operator algebras that are not necessarily self-adjoint. We focus our attention on the category of Hilbert modules over an operator algebra and on the category of operator modules over an operator algebra. The module operations are assumed to be completely bounded - usually, completely contractive. Wedevelop the notion of a Morita context between two operator algebras A and B. This is a system (A,B,{} {A}X {B},{} {B} Y {A},(\cdot,\cdot),[\cdot,\cdot]) consisting of the algebras, two bimodules {A}X {B and {B}Y {A} and pairings (\cdot,\cdot) and [\cdot,\cdot] that induce (complete) isomorphisms betweenthe (balanced) Haagerup tensor products, X \otimes {hB} {} Y and Y \otimes {hA} {} X, and the algebras, A and B, respectively. Thus, formally, a Morita context is the same as that which appears in pure ring theory. The subtleties of the theory lie in the interplay between the pure algebra and the operator space geometry. Our analysis leads to viable notions of projective operator modules and dual operator modules. We show that two C*-algebras are Morita equivalent in our sense if and only ifthey are C*-algebraically strong Morita equivalent, and moreover the equivalence bimodules are the same. The distinctive features of the non-self-adjoint theory are illuminated through a number of examples drawn from complex analysis and the theory of incidence algebras over topological partial orders.Finally, an appendix provides links to the literature that developed since this Memoir was accepted for publication.

Categories of Operator Modules (Morita Equivalence and Projective Modules)

Categories of Operator Modules (Morita Equivalence and Projective Modules) PDF Author: David P. Blecher
Publisher: American Mathematical Soc.
ISBN: 082181916X
Category : Mathematics
Languages : en
Pages : 109

Get Book Here

Book Description
We employ recent advances in the theory of operator spaces, also known as quantized functional analysis, to provide a context in which one can compare categories of modules over operator algebras that are not necessarily self-adjoint. We focus our attention on the category of Hilbert modules over an operator algebra and on the category of operator modules over an operator algebra. The module operations are assumed to be completely bounded - usually, completely contractive. Wedevelop the notion of a Morita context between two operator algebras A and B. This is a system (A,B,{} {A}X {B},{} {B} Y {A},(\cdot,\cdot),[\cdot,\cdot]) consisting of the algebras, two bimodules {A}X {B and {B}Y {A} and pairings (\cdot,\cdot) and [\cdot,\cdot] that induce (complete) isomorphisms betweenthe (balanced) Haagerup tensor products, X \otimes {hB} {} Y and Y \otimes {hA} {} X, and the algebras, A and B, respectively. Thus, formally, a Morita context is the same as that which appears in pure ring theory. The subtleties of the theory lie in the interplay between the pure algebra and the operator space geometry. Our analysis leads to viable notions of projective operator modules and dual operator modules. We show that two C*-algebras are Morita equivalent in our sense if and only ifthey are C*-algebraically strong Morita equivalent, and moreover the equivalence bimodules are the same. The distinctive features of the non-self-adjoint theory are illuminated through a number of examples drawn from complex analysis and the theory of incidence algebras over topological partial orders.Finally, an appendix provides links to the literature that developed since this Memoir was accepted for publication.

Operator Algebras and Applications

Operator Algebras and Applications PDF Author: A. Katavolos
Publisher: Springer Science & Business Media
ISBN: 9401155003
Category : Mathematics
Languages : en
Pages : 470

Get Book Here

Book Description
During the last few years, the theory of operator algebras, particularly non-self-adjoint operator algebras, has evolved dramatically, experiencing both international growth and interfacing with other important areas. The present volume presents a survey of some of the latest developments in the field in a form that is detailed enough to be accessible to advanced graduate students as well as researchers in the field. Among the topics treated are: operator spaces, Hilbert modules, limit algebras, reflexive algebras and subspaces, relations to basis theory, C* algebraic quantum groups, endomorphisms of operator algebras, conditional expectations and projection maps, and applications, particularly to wavelet theory. The volume also features an historical paper offering a new approach to the Pythagoreans' discovery of irrational numbers.

Operator Algebras and Their Applications

Operator Algebras and Their Applications PDF Author: Peter A. Fillmore
Publisher: American Mathematical Soc.
ISBN: 9780821871218
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
The study of operator algebras, which grew out of von Neumann's work in the 1920s and the 1930s on modelling quantum mechanics, has in recent years experienced tremendous growth and vitality. This growth has resulted in significant applications in other areas - both within and outside mathematics. The field was a natural candidate for a 1994-1995 program year in Operator Algebras and Applications held at The Fields Institute for Research in the Mathematical Sciences. This volume contains a selection of papers that arose from the seminars and workshops of the program. Topics covered include the classification of amenable C*-algebras, the Baum-Connes conjecture, E[subscript 0] semigroups, subfactors, E-theory, quasicrystals, and the solution to a long-standing problem in operator theory: Can almost commuting self-adjoint matrices be approximated by commuting self-adjoint matrices?

Uniform Rectifiability and Quasiminimizing Sets of Arbitrary Codimension

Uniform Rectifiability and Quasiminimizing Sets of Arbitrary Codimension PDF Author: Guy David
Publisher: American Mathematical Soc.
ISBN: 0821820486
Category : Mathematics
Languages : en
Pages : 146

Get Book Here

Book Description
This book is intended for graduate students and research mathematicians interested in calculus of variations and optimal control; optimization.

Graded Simple Jordan Superalgebras of Growth One

Graded Simple Jordan Superalgebras of Growth One PDF Author: Victor G. Kac
Publisher: American Mathematical Soc.
ISBN: 082182645X
Category : Mathematics
Languages : en
Pages : 157

Get Book Here

Book Description
This title examines in detail graded simple Jordan superalgebras of growth one. Topics include: structure of the even part; Cartan type; even part is direct sum of two loop algebras; $A$ is a loop algebra; and $J$ is a finite dimensional Jordan superalgebra or a Jordan superalgebra of a superform.

Wandering Solutions of Delay Equations with Sine-Like Feedback

Wandering Solutions of Delay Equations with Sine-Like Feedback PDF Author: Bernhard Lani-Wayda
Publisher: American Mathematical Soc.
ISBN: 0821826808
Category : Mathematics
Languages : en
Pages : 138

Get Book Here

Book Description
This book is intended for graduate students and research mathematicians interested in mechanics of particle systems.

A New Construction of Homogeneous Quaternionic Manifolds and Related Geometric Structures

A New Construction of Homogeneous Quaternionic Manifolds and Related Geometric Structures PDF Author: Vicente Cortés
Publisher: American Mathematical Soc.
ISBN: 0821821113
Category : Mathematics
Languages : en
Pages : 79

Get Book Here

Book Description
Let $V = {\mathbb R}^{p,q}$ be the pseudo-Euclidean vector space of signature $(p,q)$, $p\ge 3$ and $W$ a module over the even Clifford algebra $C\! \ell^0 (V)$. A homogeneous quaternionic manifold $(M,Q)$ is constructed for any $\mathfrak{spin}(V)$-equivariant linear map $\Pi : \wedge^2 W \rightarrow V$. If the skew symmetric vector valued bilinear form $\Pi$ is nondegenerate then $(M,Q)$ is endowed with a canonical pseudo-Riemannian metric $g$ such that $(M,Q,g)$ is a homogeneous quaternionic pseudo-Kahler manifold. If the metric $g$ is positive definite, i.e. a Riemannian metric, then the quaternionic Kahler manifold $(M,Q,g)$ is shown to admit a simply transitive solvable group of automorphisms. In this special case ($p=3$) we recover all the known homogeneous quaternionic Kahler manifolds of negative scalar curvature (Alekseevsky spaces) in a unified and direct way. If $p>3$ then $M$ does not admit any transitive action of a solvable Lie group and we obtain new families of quaternionic pseudo-Kahler manifolds. Then it is shown that for $q = 0$ the noncompact quaternionic manifold $(M,Q)$ can be endowed with a Riemannian metric $h$ such that $(M,Q,h)$ is a homogeneous quaternionic Hermitian manifold, which does not admit any transitive solvable group of isometries if $p>3$. The twistor bundle $Z \rightarrow M$ and the canonical ${\mathrm SO}(3)$-principal bundle $S \rightarrow M$ associated to the quaternionic manifold $(M,Q)$ are shown to be homogeneous under the automorphism group of the base. More specifically, the twistor space is a homogeneous complex manifold carrying an invariant holomorphic distribution $\mathcal D$ of complex codimension one, which is a complex contact structure if and only if $\Pi$ is nondegenerate. Moreover, an equivariant open holomorphic immersion $Z \rightarrow \bar{Z}$ into a homogeneous complex manifold $\bar{Z}$ of complex algebraic group is constructed. Finally, the construction is shown to have a natural mirror in the category of supermanifolds. In fact, for any $\mathfrak{spin}(V)$-equivariant linear map $\Pi : \vee^2 W \rightarrow V$ a homogeneous quaternionic supermanifold $(M,Q)$ is constructed and, moreover, a homogeneous quaternionic pseudo-Kahler supermanifold $(M,Q,g)$ if the symmetric vector valued bilinear form $\Pi$ is nondegenerate.

On the Connection between Weighted Norm Inequalities, Commutators and Real Interpolation

On the Connection between Weighted Norm Inequalities, Commutators and Real Interpolation PDF Author: Jesús Bastero
Publisher: American Mathematical Soc.
ISBN: 0821827340
Category : Mathematics
Languages : en
Pages : 94

Get Book Here

Book Description
Introduction Calderon weights Applications to real interpolation: reiteration and extrapolation Other classes of weights Extrapolation of weighted norm inequalities via extrapolation theory Applications to function spaces Commutators defined by the K-method Generalized commutators The quasi Banach case Applications to harmonic analysis BMO type spaces associated to Calderon weights Atomic decompositions and duality References.

Analytic Quotients

Analytic Quotients PDF Author: Ilijas Farah
Publisher: American Mathematical Soc.
ISBN: 0821821172
Category : Mathematics
Languages : en
Pages : 201

Get Book Here

Book Description
This book is intended for graduate students and research mathematicians interested in set theory.

Equivariant Analytic Localization of Group Representations

Equivariant Analytic Localization of Group Representations PDF Author: Laura Ann Smithies
Publisher: American Mathematical Soc.
ISBN: 0821827251
Category : Mathematics
Languages : en
Pages : 106

Get Book Here

Book Description
This book is intended for graduate students and research mathematicians interested in topological groups, Lie groups, category theory, and homological algebra.