Author: Moises R. Cesario
Publisher: Bentham Science Publishers
ISBN: 1681087588
Category : Technology & Engineering
Languages : en
Pages : 278
Book Description
The implementation of hydrogen production processes on an industrial scale requires a comprehensive understanding of the chemical proprieties of catalytic materials and the applications such materials in electrocatalysis. This volume presents information about catalytic materials for hydrogen production and hydrogen valorization in electro-oxidation reactions. Chapters emphasize on materials for classical steam, CO2 sorption enhanced steam reforming and dry reforming for hydrogen production. The hydrogen electro-oxidation reaction in anodes of Solid Oxide Fuel Cells (SOFCs) is also explained. Chapters have been contributed by experts in industrial chemistry, adding a valuable perspective for readers. This volume is essential to chemical engineering researchers and industrial professionals interested in hydrogen production systems and the science behind the materials driving the reactions in key processes.
Catalytic Materials for Hydrogen Production and Electro-oxidation Reactions
Author: Moises R. Cesario
Publisher: Bentham Science Publishers
ISBN: 1681087588
Category : Technology & Engineering
Languages : en
Pages : 278
Book Description
The implementation of hydrogen production processes on an industrial scale requires a comprehensive understanding of the chemical proprieties of catalytic materials and the applications such materials in electrocatalysis. This volume presents information about catalytic materials for hydrogen production and hydrogen valorization in electro-oxidation reactions. Chapters emphasize on materials for classical steam, CO2 sorption enhanced steam reforming and dry reforming for hydrogen production. The hydrogen electro-oxidation reaction in anodes of Solid Oxide Fuel Cells (SOFCs) is also explained. Chapters have been contributed by experts in industrial chemistry, adding a valuable perspective for readers. This volume is essential to chemical engineering researchers and industrial professionals interested in hydrogen production systems and the science behind the materials driving the reactions in key processes.
Publisher: Bentham Science Publishers
ISBN: 1681087588
Category : Technology & Engineering
Languages : en
Pages : 278
Book Description
The implementation of hydrogen production processes on an industrial scale requires a comprehensive understanding of the chemical proprieties of catalytic materials and the applications such materials in electrocatalysis. This volume presents information about catalytic materials for hydrogen production and hydrogen valorization in electro-oxidation reactions. Chapters emphasize on materials for classical steam, CO2 sorption enhanced steam reforming and dry reforming for hydrogen production. The hydrogen electro-oxidation reaction in anodes of Solid Oxide Fuel Cells (SOFCs) is also explained. Chapters have been contributed by experts in industrial chemistry, adding a valuable perspective for readers. This volume is essential to chemical engineering researchers and industrial professionals interested in hydrogen production systems and the science behind the materials driving the reactions in key processes.
Hydrogen Electrochemical Production
Author: Christophe Coutanceau
Publisher: Academic Press
ISBN: 0128112514
Category : Science
Languages : en
Pages : 113
Book Description
Hydrogen Electrochemical Production presents different avenues of hydrogen production for energy applications, including current developments and future perspectives, using an interdisciplinary approach. Part of the Hydrogen Energy and Fuel Cell Primers series, the volume synthesizes information from many sources, making it a useful reference for industry professionals, researchers and graduate students. The book examines various methods, explaining their advantages and limitations. The water electrolysis reaction and systems are explored from different points of view, including an assessment of state-of-the-art technologies. Alternatives to water for feeding the electrolysis cell anode and for electrochemical hydrogen production (such as alcohol or other compounds from biomass) are discussed. - Explores current technology developments and future perspectives of hydrogen production for energy applications - Examines the state-of-the art technology in electrolysis reaction and systems and discusses the advantages and limitations of various methods - Covers alternatives to water for feeding electrolysis cell anode, including alcohol and other compounds from biomass
Publisher: Academic Press
ISBN: 0128112514
Category : Science
Languages : en
Pages : 113
Book Description
Hydrogen Electrochemical Production presents different avenues of hydrogen production for energy applications, including current developments and future perspectives, using an interdisciplinary approach. Part of the Hydrogen Energy and Fuel Cell Primers series, the volume synthesizes information from many sources, making it a useful reference for industry professionals, researchers and graduate students. The book examines various methods, explaining their advantages and limitations. The water electrolysis reaction and systems are explored from different points of view, including an assessment of state-of-the-art technologies. Alternatives to water for feeding the electrolysis cell anode and for electrochemical hydrogen production (such as alcohol or other compounds from biomass) are discussed. - Explores current technology developments and future perspectives of hydrogen production for energy applications - Examines the state-of-the art technology in electrolysis reaction and systems and discusses the advantages and limitations of various methods - Covers alternatives to water for feeding electrolysis cell anode, including alcohol and other compounds from biomass
PEM Fuel Cell Electrocatalysts and Catalyst Layers
Author: Jiujun Zhang
Publisher: Springer Science & Business Media
ISBN: 1848009364
Category : Technology & Engineering
Languages : en
Pages : 1147
Book Description
Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.
Publisher: Springer Science & Business Media
ISBN: 1848009364
Category : Technology & Engineering
Languages : en
Pages : 1147
Book Description
Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.
Production of Clean Hydrogen by Electrochemical Reforming of Oxygenated Organic Compounds
Author: Claude Lamy
Publisher: Academic Press
ISBN: 0128215011
Category : Science
Languages : en
Pages : 134
Book Description
Production of Clean Hydrogen by Electrochemical Reforming of Oxygenated Organic Compounds provides a comprehensive overview of the thermodynamics and experimental results that allow the decomposition process of organic compounds leading to hydrogen to be carried out at working cell voltages much lower than those encountered in water electrolysis. The authors review different methods of synthesis and characterization of the catalysts needed to activate the electro-oxidation reaction and describe different electrolysis experiments that produce hydrogen in a Proton Exchange Membrane Electrolysis Cell (PEMEC). Other sections investigate the effect of the nature of the reactive molecules, the nature and structure of the catalysts, and more. By exploring the link between organic oxidation/conversion to hydrogen production, this book fills a gap in the existing literature and provides researchers in the field with an authoritative and comprehensive reference they can use when developing new sustainable processes and systems for hydrogen production. - Explores, in detail, the decomposition process of organic compounds leading to hydrogen - Presents foundational information, practical insights and pathways for future work in the development of proton exchange membrane electrolysis cell systems - Includes results, experimental data and interpretations using different organic compounds, such as methanol, formic acid, ethanol, glycerol and biomass
Publisher: Academic Press
ISBN: 0128215011
Category : Science
Languages : en
Pages : 134
Book Description
Production of Clean Hydrogen by Electrochemical Reforming of Oxygenated Organic Compounds provides a comprehensive overview of the thermodynamics and experimental results that allow the decomposition process of organic compounds leading to hydrogen to be carried out at working cell voltages much lower than those encountered in water electrolysis. The authors review different methods of synthesis and characterization of the catalysts needed to activate the electro-oxidation reaction and describe different electrolysis experiments that produce hydrogen in a Proton Exchange Membrane Electrolysis Cell (PEMEC). Other sections investigate the effect of the nature of the reactive molecules, the nature and structure of the catalysts, and more. By exploring the link between organic oxidation/conversion to hydrogen production, this book fills a gap in the existing literature and provides researchers in the field with an authoritative and comprehensive reference they can use when developing new sustainable processes and systems for hydrogen production. - Explores, in detail, the decomposition process of organic compounds leading to hydrogen - Presents foundational information, practical insights and pathways for future work in the development of proton exchange membrane electrolysis cell systems - Includes results, experimental data and interpretations using different organic compounds, such as methanol, formic acid, ethanol, glycerol and biomass
Clathrochelates
Author: Y.Z. Voloshin
Publisher: Elsevier
ISBN: 0080529178
Category : Science
Languages : en
Pages : 433
Book Description
Clathrochelates are compounds which contain a metal ion encapsulated within a three dimensional cage of macrobicyclic ligand atoms. Within this cage the metal has unique properties and is to a great extent isolated from environmental factors. Such complexes are suitable as models of the most essential biological systems, membrane transport, electron carriers, highly selective and sensitive analytical reagents, catalysts for photochemical and redox processes, cation and anion receptors, etc. The aim of this monograph is to generalize and analyze experimental and theoretical data on clathrochelates in order to promote further research in this promising field of chemistry.Chapter 1 gives general concepts of complexes with encapsulated metal ions, discusses basic specific features of these compounds, considers and characterizes the main types of compounds with encapsulated metal ions and the main classes of clathrochelates, and includes the current nomenclature. Chapter 2 deals with the pathways of clathrochelate synthesis and the general procedures for the synthesis of macrobicyclic tris-dioximates, phosphorus-containing tris-diiminates, sepulchrates, sarcophagi-nates, and polyene and other types of clathrochelate complexes. Chapter 3 concerns studies of the electronic and spatial structure of clathrochelate complexes. In Chapter 4, the kinetics and mechanism of synthesis and decomposition reactions of macrobicyclic tris-dioximates, sarcophaginates, and sepulchrates in solution and gas phases are discussed. Chapter 5 considers the electrochemical, photochemical, and some other characteristics of clathrochelates and their applications associated with these characteristics. Finally, the practical applications of the unique properties of clathrochelates and perspectives on the synthesis of new clathrochelates are described in Chapters 6 and 7, respectively.
Publisher: Elsevier
ISBN: 0080529178
Category : Science
Languages : en
Pages : 433
Book Description
Clathrochelates are compounds which contain a metal ion encapsulated within a three dimensional cage of macrobicyclic ligand atoms. Within this cage the metal has unique properties and is to a great extent isolated from environmental factors. Such complexes are suitable as models of the most essential biological systems, membrane transport, electron carriers, highly selective and sensitive analytical reagents, catalysts for photochemical and redox processes, cation and anion receptors, etc. The aim of this monograph is to generalize and analyze experimental and theoretical data on clathrochelates in order to promote further research in this promising field of chemistry.Chapter 1 gives general concepts of complexes with encapsulated metal ions, discusses basic specific features of these compounds, considers and characterizes the main types of compounds with encapsulated metal ions and the main classes of clathrochelates, and includes the current nomenclature. Chapter 2 deals with the pathways of clathrochelate synthesis and the general procedures for the synthesis of macrobicyclic tris-dioximates, phosphorus-containing tris-diiminates, sepulchrates, sarcophagi-nates, and polyene and other types of clathrochelate complexes. Chapter 3 concerns studies of the electronic and spatial structure of clathrochelate complexes. In Chapter 4, the kinetics and mechanism of synthesis and decomposition reactions of macrobicyclic tris-dioximates, sarcophaginates, and sepulchrates in solution and gas phases are discussed. Chapter 5 considers the electrochemical, photochemical, and some other characteristics of clathrochelates and their applications associated with these characteristics. Finally, the practical applications of the unique properties of clathrochelates and perspectives on the synthesis of new clathrochelates are described in Chapters 6 and 7, respectively.
PEM Water Electrolysis
Author: Dmitri Bessarabov
Publisher: Academic Press
ISBN: 0081028318
Category : Science
Languages : en
Pages : 140
Book Description
PEM Water Electrolysis, a volume in the Hydrogen Energy and Fuel Cell Primers series presents the most recent advances in the field. It brings together information that has thus far been scattered in many different sources under one single title, making it a useful reference for industry professionals, researchers and graduate students. Volumes One and Two allow readers to identify technology gaps for commercially viable PEM electrolysis systems for energy applications and examine the fundamentals of PEM electrolysis and selected research topics that are top of mind for the academic and industry community, such as gas cross-over and AST protocols. The book lays the foundation for the exploration of the current industrial trends for PEM electrolysis, such as power to gas application and a strong focus on the current trends in the application of PEM electrolysis associated with energy storage. - Presents the fundamentals and most current knowledge in proton exchange membrane water electrolyzers - Explores the technology gaps and challenges for commercial deployment of PEM water electrolysis technologies - Includes unconventional systems, such as ozone generators - Brings together information from many different sources under one single title, making it a useful reference for industry professionals, researchers and graduate students alike
Publisher: Academic Press
ISBN: 0081028318
Category : Science
Languages : en
Pages : 140
Book Description
PEM Water Electrolysis, a volume in the Hydrogen Energy and Fuel Cell Primers series presents the most recent advances in the field. It brings together information that has thus far been scattered in many different sources under one single title, making it a useful reference for industry professionals, researchers and graduate students. Volumes One and Two allow readers to identify technology gaps for commercially viable PEM electrolysis systems for energy applications and examine the fundamentals of PEM electrolysis and selected research topics that are top of mind for the academic and industry community, such as gas cross-over and AST protocols. The book lays the foundation for the exploration of the current industrial trends for PEM electrolysis, such as power to gas application and a strong focus on the current trends in the application of PEM electrolysis associated with energy storage. - Presents the fundamentals and most current knowledge in proton exchange membrane water electrolyzers - Explores the technology gaps and challenges for commercial deployment of PEM water electrolysis technologies - Includes unconventional systems, such as ozone generators - Brings together information from many different sources under one single title, making it a useful reference for industry professionals, researchers and graduate students alike
Hydrogen Production Technologies
Author: Mehmet Sankir
Publisher: John Wiley & Sons
ISBN: 1119283655
Category : Science
Languages : en
Pages : 653
Book Description
Provides a comprehensive practical review of the new technologies used to obtain hydrogen more efficiently via catalytic, electrochemical, bio- and photohydrogen production. Hydrogen has been gaining more attention in both transportation and stationary power applications. Fuel cell-powered cars are on the roads and the automotive industry is demanding feasible and efficient technologies to produce hydrogen. The principles and methods described herein lead to reasonable mitigation of the great majority of problems associated with hydrogen production technologies. The chapters in this book are written by distinguished authors who have extensive experience in their fields, and readers will have a chance to compare the fundamental production techniques and learn about the pros and cons of these technologies. The book is organized into three parts. Part I shows the catalytic and electrochemical principles involved in hydrogen production technologies. Part II addresses hydrogen production from electrochemically active bacteria (EAB) by decomposing organic compound into hydrogen in microbial electrolysis cells (MECs). The final part of the book is concerned with photohydrogen generation. Recent developments in the area of semiconductor-based nanomaterials, specifically semiconductor oxides, nitrides and metal free semiconductor-based nanomaterials for photocatalytic hydrogen production are extensively discussed.
Publisher: John Wiley & Sons
ISBN: 1119283655
Category : Science
Languages : en
Pages : 653
Book Description
Provides a comprehensive practical review of the new technologies used to obtain hydrogen more efficiently via catalytic, electrochemical, bio- and photohydrogen production. Hydrogen has been gaining more attention in both transportation and stationary power applications. Fuel cell-powered cars are on the roads and the automotive industry is demanding feasible and efficient technologies to produce hydrogen. The principles and methods described herein lead to reasonable mitigation of the great majority of problems associated with hydrogen production technologies. The chapters in this book are written by distinguished authors who have extensive experience in their fields, and readers will have a chance to compare the fundamental production techniques and learn about the pros and cons of these technologies. The book is organized into three parts. Part I shows the catalytic and electrochemical principles involved in hydrogen production technologies. Part II addresses hydrogen production from electrochemically active bacteria (EAB) by decomposing organic compound into hydrogen in microbial electrolysis cells (MECs). The final part of the book is concerned with photohydrogen generation. Recent developments in the area of semiconductor-based nanomaterials, specifically semiconductor oxides, nitrides and metal free semiconductor-based nanomaterials for photocatalytic hydrogen production are extensively discussed.
New and Future Developments in Catalysis
Author: Steven L Suib
Publisher: Newnes
ISBN: 044453881X
Category : Science
Languages : en
Pages : 551
Book Description
New and Future Developments in Catalysis is a package of seven books that compile the latest ideas concerning alternate and renewable energy sources and the role that catalysis plays in converting new renewable feedstock into biofuels and biochemicals. Both homogeneous and heterogeneous catalysts and catalytic processes will be discussed in a unified and comprehensive approach. There will be extensive cross-referencing within all volumes.Batteries and fuel cells are considered to be environmentally friendly devices for storage and production of electricity, and they are gaining considerable attention. The preparation of the feed for fuel cells (fuel) as well as the catalysts and the various conversion processes taking place in these devices are covered in this volume, together with the catalytic processes for hydrogen generation and storage. An economic analysis of the various processes is also part of this volume and enables an informed choice of the most suitable process. - Offers in-depth coverage of all catalytic topics of current interest and outlines future challenges and research areas - A clear and visual description of all parameters and conditions, enabling the reader to draw conclusions for a particular case - Outlines the catalytic processes applicable to energy generation and design of green processes
Publisher: Newnes
ISBN: 044453881X
Category : Science
Languages : en
Pages : 551
Book Description
New and Future Developments in Catalysis is a package of seven books that compile the latest ideas concerning alternate and renewable energy sources and the role that catalysis plays in converting new renewable feedstock into biofuels and biochemicals. Both homogeneous and heterogeneous catalysts and catalytic processes will be discussed in a unified and comprehensive approach. There will be extensive cross-referencing within all volumes.Batteries and fuel cells are considered to be environmentally friendly devices for storage and production of electricity, and they are gaining considerable attention. The preparation of the feed for fuel cells (fuel) as well as the catalysts and the various conversion processes taking place in these devices are covered in this volume, together with the catalytic processes for hydrogen generation and storage. An economic analysis of the various processes is also part of this volume and enables an informed choice of the most suitable process. - Offers in-depth coverage of all catalytic topics of current interest and outlines future challenges and research areas - A clear and visual description of all parameters and conditions, enabling the reader to draw conclusions for a particular case - Outlines the catalytic processes applicable to energy generation and design of green processes
Cage Metal Complexes
Author: Yan Voloshin
Publisher: Springer
ISBN: 331956420X
Category : Science
Languages : en
Pages : 475
Book Description
This fundamental book presents the most comprehensive summary of the current state in chemistry of cage metal complexes. After their previous book “The Encapsulation Phenomenon” (www.springer.com/978-3-319-27737-0) the authors in this book focus on the encapsulation of metal ions by different types of three-dimensional mono- and polynucleating caging ligands. Within these cage metal complexes, (metal) ions can be isolated from external factors. The book provides both a classification of the cage compounds and summaries of synthetic approaches. On that basis the authors then describe the unique chemical and physical properties and the resulting reactivity of the cage compounds, as well as practical and potential applications as potent topological drugs and prodrugs, antifibrillogenic agents, radiodiagnostic and radiotherapeutic compounds, paramagnetic probes, single-molecule magnets, electrocatalysts for hydrogen production, (photo)electronic devices, and many more. Readers will find a well-structured and concise overview, with particular emphasis on a review of synthesis and reactivity of various cage metal complexes, summarizing over 400 literature references, clearly presented in over 300 color schemes and figures.
Publisher: Springer
ISBN: 331956420X
Category : Science
Languages : en
Pages : 475
Book Description
This fundamental book presents the most comprehensive summary of the current state in chemistry of cage metal complexes. After their previous book “The Encapsulation Phenomenon” (www.springer.com/978-3-319-27737-0) the authors in this book focus on the encapsulation of metal ions by different types of three-dimensional mono- and polynucleating caging ligands. Within these cage metal complexes, (metal) ions can be isolated from external factors. The book provides both a classification of the cage compounds and summaries of synthetic approaches. On that basis the authors then describe the unique chemical and physical properties and the resulting reactivity of the cage compounds, as well as practical and potential applications as potent topological drugs and prodrugs, antifibrillogenic agents, radiodiagnostic and radiotherapeutic compounds, paramagnetic probes, single-molecule magnets, electrocatalysts for hydrogen production, (photo)electronic devices, and many more. Readers will find a well-structured and concise overview, with particular emphasis on a review of synthesis and reactivity of various cage metal complexes, summarizing over 400 literature references, clearly presented in over 300 color schemes and figures.
Electrochemical Methods for Hydrogen Production
Author: Keith Scott
Publisher: Royal Society of Chemistry
ISBN: 1839160071
Category : Science
Languages : en
Pages : 430
Book Description
The hydrogen economy is receiving increased attention due to concerns around the consequences of fossil fuel use, and hydrogen has great potential as a way to reduce reliance on traditional energy sources. Increased hydrogen supplies using cleaner methods are seen as essential for potential hydrogen based power systems for transportation and renewable energy conversion into fuel. Electrochemical Methods for Hydrogen Production provides a comprehensive picture of the various routes to use electricity to produce hydrogen using electrochemical science and technology. The book provides an overview of the fundamentals of electrochemical cells and performance characterisation, as well as a comparison of current applications. It also includes the various types of electrolysers currently used commercially and the range of new electrolysis processes, including photo-electrochemical, biological and thermal energy techniques. Edited by an expert in the field, this title will be of interest to graduate students and researchers in academia and industry working in energy, electrochemistry, physical chemistry and chemical engineering.
Publisher: Royal Society of Chemistry
ISBN: 1839160071
Category : Science
Languages : en
Pages : 430
Book Description
The hydrogen economy is receiving increased attention due to concerns around the consequences of fossil fuel use, and hydrogen has great potential as a way to reduce reliance on traditional energy sources. Increased hydrogen supplies using cleaner methods are seen as essential for potential hydrogen based power systems for transportation and renewable energy conversion into fuel. Electrochemical Methods for Hydrogen Production provides a comprehensive picture of the various routes to use electricity to produce hydrogen using electrochemical science and technology. The book provides an overview of the fundamentals of electrochemical cells and performance characterisation, as well as a comparison of current applications. It also includes the various types of electrolysers currently used commercially and the range of new electrolysis processes, including photo-electrochemical, biological and thermal energy techniques. Edited by an expert in the field, this title will be of interest to graduate students and researchers in academia and industry working in energy, electrochemistry, physical chemistry and chemical engineering.