Catalytic, Low Temperature Oxidation of Methane Into Methanol Over Copper-exchanged Zeolites

Catalytic, Low Temperature Oxidation of Methane Into Methanol Over Copper-exchanged Zeolites PDF Author: Karthik Narsimhan
Publisher:
ISBN:
Category :
Languages : en
Pages : 147

Get Book Here

Book Description
As production of shale gas has increased greatly in the United States, the amount of stranded shale gas that is flared as carbon dioxide has become significant enough to be considered an environmental hazard and a wasted resource. The conversion of methane, the primary component of natural gas, into methanol, an easily stored liquid, is of practical interest. However, shale wells are generally inaccessible to reforming facilities, and construction of on-site, conventional methanol synthesis plants is cost prohibitive. Capital costs could be reduced by the direct conversion of methane into methanol at low temperature. Existing strategies for the partial oxidation of methane require harsh solvents, need exotic oxidizing agents, or deactivate easily. Copper-exchanged zeolites have emerged as candidates for methanol production due to high methanol selectivity (> 99%), utilization of oxygen, and low reaction temperature (423-473 K). Despite these advantages, three significant shortcomings exist: 1) the location of surface intermediates on the zeolite is not well understood; 2) methane oxidation is stoichiometric, not catalytic; 3) there are few active sites and methanol yield is low. This work addresses all three shortcomings. First, a new reaction pathway is identified for methane oxidation in copper-exchanged mordenite zeolites using tandem methane oxidation and Koch carbonylation reactions. Methoxy species migrate away from the copper active sites and adsorb onto Bronsted acid sites, signifying spillover on the zeolite surface. Second, a process is developed as the first instance of the catalytic oxidation of methane into methanol at low temperature, in the vapor phase, and using oxygen as the oxidant. A variety of commercially available copper-exchanged zeolites are shown to exhibit stable methanol production with high methanol selectivity. Third, catalytic methanol production rates and methane conversion are further improved 100- fold through the synthetic control of copper speciation in chabazite zeolites. Isolated monocopper species, directed through the one-pot synthesis of copper-exchanged chabazite zeolites, correlates with methane oxidation activity and is likely the precursor to the catalytic site. Together, these synthetic methods provide guidelines for catalyst design and further improvements in catalytic activity.

Catalytic, Low Temperature Oxidation of Methane Into Methanol Over Copper-exchanged Zeolites

Catalytic, Low Temperature Oxidation of Methane Into Methanol Over Copper-exchanged Zeolites PDF Author: Karthik Narsimhan
Publisher:
ISBN:
Category :
Languages : en
Pages : 147

Get Book Here

Book Description
As production of shale gas has increased greatly in the United States, the amount of stranded shale gas that is flared as carbon dioxide has become significant enough to be considered an environmental hazard and a wasted resource. The conversion of methane, the primary component of natural gas, into methanol, an easily stored liquid, is of practical interest. However, shale wells are generally inaccessible to reforming facilities, and construction of on-site, conventional methanol synthesis plants is cost prohibitive. Capital costs could be reduced by the direct conversion of methane into methanol at low temperature. Existing strategies for the partial oxidation of methane require harsh solvents, need exotic oxidizing agents, or deactivate easily. Copper-exchanged zeolites have emerged as candidates for methanol production due to high methanol selectivity (> 99%), utilization of oxygen, and low reaction temperature (423-473 K). Despite these advantages, three significant shortcomings exist: 1) the location of surface intermediates on the zeolite is not well understood; 2) methane oxidation is stoichiometric, not catalytic; 3) there are few active sites and methanol yield is low. This work addresses all three shortcomings. First, a new reaction pathway is identified for methane oxidation in copper-exchanged mordenite zeolites using tandem methane oxidation and Koch carbonylation reactions. Methoxy species migrate away from the copper active sites and adsorb onto Bronsted acid sites, signifying spillover on the zeolite surface. Second, a process is developed as the first instance of the catalytic oxidation of methane into methanol at low temperature, in the vapor phase, and using oxygen as the oxidant. A variety of commercially available copper-exchanged zeolites are shown to exhibit stable methanol production with high methanol selectivity. Third, catalytic methanol production rates and methane conversion are further improved 100- fold through the synthetic control of copper speciation in chabazite zeolites. Isolated monocopper species, directed through the one-pot synthesis of copper-exchanged chabazite zeolites, correlates with methane oxidation activity and is likely the precursor to the catalytic site. Together, these synthetic methods provide guidelines for catalyst design and further improvements in catalytic activity.

Catalytic Conversion of Methane to Partially Oxidized Products Over Copper-exchanged Zeolites

Catalytic Conversion of Methane to Partially Oxidized Products Over Copper-exchanged Zeolites PDF Author: Kimberly Tam Dinh
Publisher:
ISBN:
Category :
Languages : en
Pages : 169

Get Book Here

Book Description
The selective conversion of methane to liquid oxygenated compounds is a grand challenge in catalysis. Although natural gas can be processed industrially in large-scale facilities, new catalytic processes are required that economically directly convert methane to liquid products in small-scale units to exploit highly abundant but difficult-to-access gas reserves. Our group recently reported the first instance of a continuous, gas phase catalytic process for the direct conversion of methane to methanol using copper-exchanged zeolites by feeding only methane, water, and oxygen at 473 K. While this continuous system is an attractive route for the mild conversion of methane to value-added products, fundamental understanding of the reaction pathway and active site is necessary to engineer improved catalysts and an improved process. Thus, my thesis has investigated the fundamental kinetics and active site requirements for continuous partial methane oxidation and using this knowledge to design an improved process. First, a reaction pathway and a [Cu-O-Cu]2+ motif as the active site were identified for the selective catalytic conversion of methane to methanol. Kinetic analysis on copper-exchanged SSZ-13 zeolites across a range of Cu loadings and Al spatial distributions revealed the reaction pathway is initiated by rate-limiting C-H bond scission of methane. Water is kinetically inconsequential, but required for methanol desorption. Carbon dioxide is generated from the sequential over oxidation of partially oxidized intermediates and downstream methanol oxidation. Selective partial oxidation was achieved with catalyst samples of high Al content and moderate Cu content (Cu/cage

Plasma Catalysis

Plasma Catalysis PDF Author: Annemie Bogaerts
Publisher: MDPI
ISBN: 3038977500
Category : Technology & Engineering
Languages : en
Pages : 248

Get Book Here

Book Description
Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC remediation). Plasma catalysis allows thermodynamically difficult reactions to proceed at ambient pressure and temperature, due to activation of the gas molecules by energetic electrons created in the plasma. However, plasma is very reactive but not selective, and thus a catalyst is needed to improve the selectivity. In spite of the growing interest in plasma catalysis, the underlying mechanisms of the (possible) synergy between plasma and catalyst are not yet fully understood. Indeed, plasma catalysis is quite complicated, as the plasma will affect the catalyst and vice versa. Moreover, due to the reactive plasma environment, the most suitable catalysts will probably be different from thermal catalysts. More research is needed to better understand the plasma–catalyst interactions, in order to further improve the applications.

Methane Conversion

Methane Conversion PDF Author: D.M. Bibby
Publisher: Elsevier
ISBN: 0080960707
Category : Technology & Engineering
Languages : en
Pages : 759

Get Book Here

Book Description
This proceedings volume comprises the invited plenary lectures, contributed and poster papers presented at a symposium organised to mark the successful inauguration of the world's first commercial plant for production of gasoline from natural gas, based on the Mobil methanol-to-gasoline process. The objectives of the Symposium were to present both fundamental research and engineering aspects of the development and commercialization of gas-to-gasoline processes. These include steam reforming, methanol synthesis and methanol-to-gasoline. Possible alternative processes e.g. MOGD, Fischer-Tropsch synthesis of hydrocarbons, and the direct conversion of methane to higher hydrocarbons were also considered.The papers in this volume provide a valuable and extremely wide-ranging overview of current research into the various options for natural gas conversion, giving a detailed description of the gas-to-gasoline process and plant. Together, they represent a unique combination of fundamental surface chemistry catalyst characterization, reaction chemistry and engineering scale-up and commercialization.

Direct Low Temperature Oxidation of Methane to Methanol Via Copper Zeolite Materials

Direct Low Temperature Oxidation of Methane to Methanol Via Copper Zeolite Materials PDF Author: Barbra Eva Schaller
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Progress in Catalysis

Progress in Catalysis PDF Author: K.J. Smith
Publisher: Elsevier
ISBN: 0080887511
Category : Technology & Engineering
Languages : en
Pages : 423

Get Book Here

Book Description
This volume contains papers and short communications presented at the 12th Canadian Symposium on Catalysis. The aim of the meeting was to present an update on new and established areas of catalysis research being performed in industry, government and university laboratories. Topics covered relate mainly to resource processing, such as heavy oil and natural gas upgrading, and to environmental issues. Approximately half the papers are included in sections on hydrogenation, carbon-carbon bond formation and environmental issues. The remaining papers cover general topics and homogeneous reactions. Examples include studies of hydroprocessing catalysts, carbon-carbon bond formation via methane oxidative coupling and dimerization of olefins, homogeneous catalysts in polymerization and dimerization reactions, performance of pillared clays, metal-oxygen cluster compounds, zeolites and catalysts prepared by metal oxide vapour synthesis. Studies that address the environmental issues include wet-air oxidation, catalytic elimination of organics, oxidation reactions and catalyst regeneration. The book provides practitioners of catalysis with an update on a wide number of topics and will be particularly useful to those interested in an overview of current catalysis research activities. Specialists in the areas of hydrogenation, carbon-carbon bond formation, homogeneous catalysis and environmental issues will also find a valuable set of new data and interesting discussions on these topics.

Catalysis and the Mechanism of Methane Conversion to Chemicals

Catalysis and the Mechanism of Methane Conversion to Chemicals PDF Author: Toshihide Baba
Publisher: Springer Nature
ISBN: 9811541329
Category : Science
Languages : en
Pages : 220

Get Book Here

Book Description
This book introduces various types of reactions to produce chemicals by the direct conversion of methane from the point of view of mechanistic and functional aspects. The chemicals produced from methane are aliphatic and aromatic hydrocarbons such as propylene and benzene, and methanol. These chemicals are created by using homogeneous catalysts, heterogeneous catalysts such as zeolites, and biocatalysts such as enzymes. Various examples of methane conversion reactions that are discussed have been chosen to illustrate how heterogeneous and homogenous catalysts and biocatalysts and/or their reaction environments control the formation of highly energetic species from methane contributing to C-C and C-O bond formation.

Theoretical Insights Into the Selective Oxidation of Methane to Methanol in Copper-exchanged Mordenite

Theoretical Insights Into the Selective Oxidation of Methane to Methanol in Copper-exchanged Mordenite PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Get Book Here

Book Description
Selective oxidation of methane to methanol is one of the most difficult chemical processes to perform. A potential group of catalysts to achieve CH4 partial oxidation are Cu-exchanged zeolites mimicking the active structure of the enzyme methane monooxygenase. However, the details of this conversion, including the structure of the active site, are still under debate. In this contribution, periodic density functional theory (DFT) methods were employed to explore the molecular features of the selective oxidation of methane to methanol catalyzed by Cu-exchanged mordenite (Cu-MOR). We focused on two types of previously suggested active species, CuOCu and CuOOCu. Our calculations indicate that the formation of CuOCu is more feasible than that of CuOOCu. In addition, a much lower C-H dissociation barrier is located on the former active site, indicating that C-H bond activation is easily achieved with CuOCu. We calculated the energy barriers of all elementary steps for the entire process, including catalyst activation, CH4 activation, and CH3OH desorption. Finally, our calculations are in agreement with experimental observations and present the first theoretical study examining the entire process of selective oxidation of methane to methanol.

Frontiers of Green Catalytic Selective Oxidations

Frontiers of Green Catalytic Selective Oxidations PDF Author: Konstantin P. Bryliakov
Publisher: Springer
ISBN: 9789813297531
Category : Science
Languages : en
Pages : 295

Get Book Here

Book Description
The demand for novel efficient and environmentally sustainable chemo, regio- and stereoselective catalyst systems for the oxidation of organic substrates is continuously growing in line with toughening economic and environmental constraints. This book addresses these issues; it consists of eleven chapters written by world-recognized experts in green and sustainable oxidation catalysis. The most urgent and challenging topics, in the judgment of the editor, such as green asymmetric epoxidations, sulfoxidatiuons, C–H oxidations; oxidation catalysis by polyoxometalates and oxidations in non-conventional solvents, etc. have been critically reviewed in this book. Both fundamental aspects, such as catalysts design, catalytic properties, nature of catalytically active sites and reaction mechanisms, and practical outlook of the oxidations have been addressed by the authors. The book appeals to a broad readership, particularly graduate students, employees of universities and research organizations, and industrial researchers, particularly those working in the areas of homogeneous oxidation catalysis, asymmetric synthesis, organocatalysis, sustainable catalytic processes and green chemistry, mechanisms of catalytic reactions, synthesis of bioactive compounds, biomimetic chemistry, etc. Konstantin Bryliakov is Leading Researcher at the Boreskov Institute of Catalysis. In 2016, he was elected Honorary Professor of the Russian Academy of Sciences.

Advances in Sustainable Energy

Advances in Sustainable Energy PDF Author: Yong-jun Gao
Publisher: Springer Nature
ISBN: 303074406X
Category : Technology & Engineering
Languages : en
Pages : 871

Get Book Here

Book Description
This books provides a comprehensive platform to the scientific, education and research communities working on various fields related to sustainable energy. It covers the exploration, generation and application of this area to meet societal needs as well as addressing global issues related to the environment. The content of this book presents research related to energy and how to tackle climate change as a comprehensive framework based on the success of the Millennium Development Goals (MDGs). The authors use the scientific method to analyze and deliver viable technical solutions, demonstrating how chemistry and engineering can be combined to solve technically challenging problems. While maintaining high scientific rigor, a quantitative approach is offered in select chapters to the study of energy related to our societies increasing need for electrical and chemical energy feedstocks.