Author: I. J. Schoenberg
Publisher: SIAM
ISBN: 089871009X
Category : Mathematics
Languages : en
Pages : 127
Book Description
In this book the author explains cardinal spline functions, the basic properties of B-splines and exponential Euler splines.
Cardinal Spline Interpolation
Author: I. J. Schoenberg
Publisher: SIAM
ISBN: 089871009X
Category : Mathematics
Languages : en
Pages : 127
Book Description
In this book the author explains cardinal spline functions, the basic properties of B-splines and exponential Euler splines.
Publisher: SIAM
ISBN: 089871009X
Category : Mathematics
Languages : en
Pages : 127
Book Description
In this book the author explains cardinal spline functions, the basic properties of B-splines and exponential Euler splines.
Cardinal Spline Interpolation
Author: I. J. Schoenberg
Publisher: SIAM
ISBN: 9781611970555
Category : Mathematics
Languages : en
Pages : 131
Book Description
As this monograph shows, the purpose of cardinal spline interpolation is to bridge the gap between the linear spline and the cardinal series. The author explains cardinal spline functions, the basic properties of B-splines, including B- splines with equidistant knots and cardinal splines represented in terms of B-splines, and exponential Euler splines, leading to the most important case and central problem of the book-- cardinal spline interpolation, with main results, proofs, and some applications. Other topics discussed include cardinal Hermite interpolation, semi-cardinal interpolation, finite spline interpolation problems, extremum and limit properties, equidistant spline interpolation applied to approximations of Fourier transforms, and the smoothing of histograms.
Publisher: SIAM
ISBN: 9781611970555
Category : Mathematics
Languages : en
Pages : 131
Book Description
As this monograph shows, the purpose of cardinal spline interpolation is to bridge the gap between the linear spline and the cardinal series. The author explains cardinal spline functions, the basic properties of B-splines, including B- splines with equidistant knots and cardinal splines represented in terms of B-splines, and exponential Euler splines, leading to the most important case and central problem of the book-- cardinal spline interpolation, with main results, proofs, and some applications. Other topics discussed include cardinal Hermite interpolation, semi-cardinal interpolation, finite spline interpolation problems, extremum and limit properties, equidistant spline interpolation applied to approximations of Fourier transforms, and the smoothing of histograms.
Interpolating Cubic Splines
Author: Gary D. Knott
Publisher: Springer Science & Business Media
ISBN: 1461213207
Category : Computers
Languages : en
Pages : 247
Book Description
A spline is a thin flexible strip composed of a material such as bamboo or steel that can be bent to pass through or near given points in the plane, or in 3-space in a smooth manner. Mechanical engineers and drafting specialists find such (physical) splines useful in designing and in drawing plans for a wide variety of objects, such as for hulls of boats or for the bodies of automobiles where smooth curves need to be specified. These days, physi cal splines are largely replaced by computer software that can compute the desired curves (with appropriate encouragment). The same mathematical ideas used for computing "spline" curves can be extended to allow us to compute "spline" surfaces. The application ofthese mathematical ideas is rather widespread. Spline functions are central to computer graphics disciplines. Spline curves and surfaces are used in computer graphics renderings for both real and imagi nary objects. Computer-aided-design (CAD) systems depend on algorithms for computing spline functions, and splines are used in numerical analysis and statistics. Thus the construction of movies and computer games trav els side-by-side with the art of automobile design, sail construction, and architecture; and statisticians and applied mathematicians use splines as everyday computational tools, often divorced from graphic images.
Publisher: Springer Science & Business Media
ISBN: 1461213207
Category : Computers
Languages : en
Pages : 247
Book Description
A spline is a thin flexible strip composed of a material such as bamboo or steel that can be bent to pass through or near given points in the plane, or in 3-space in a smooth manner. Mechanical engineers and drafting specialists find such (physical) splines useful in designing and in drawing plans for a wide variety of objects, such as for hulls of boats or for the bodies of automobiles where smooth curves need to be specified. These days, physi cal splines are largely replaced by computer software that can compute the desired curves (with appropriate encouragment). The same mathematical ideas used for computing "spline" curves can be extended to allow us to compute "spline" surfaces. The application ofthese mathematical ideas is rather widespread. Spline functions are central to computer graphics disciplines. Spline curves and surfaces are used in computer graphics renderings for both real and imagi nary objects. Computer-aided-design (CAD) systems depend on algorithms for computing spline functions, and splines are used in numerical analysis and statistics. Thus the construction of movies and computer games trav els side-by-side with the art of automobile design, sail construction, and architecture; and statisticians and applied mathematicians use splines as everyday computational tools, often divorced from graphic images.
The Theory of Splines and Their Applications
Author: J. H. Ahlberg
Publisher: Elsevier
ISBN: 1483222950
Category : Mathematics
Languages : en
Pages : 297
Book Description
The Theory of Splines and Their Applications discusses spline theory, the theory of cubic splines, polynomial splines of higher degree, generalized splines, doubly cubic splines, and two-dimensional generalized splines. The book explains the equations of the spline, procedures for applications of the spline, convergence properties, equal-interval splines, and special formulas for numerical differentiation or integration. The text explores the intrinsic properties of cubic splines including the Hilbert space interpretation, transformations defined by a mesh, and some connections with space technology concerning the payload of a rocket. The book also discusses the theory of polynomial splines of odd degree which can be approached through algebraically (which depends primarily on the examination in detail of the linear system of equations defining the spline). The theory can also be approached intrinsically (which exploits the consequences of basic integral relations existing between functions and approximating spline functions). The text also considers the second integral relation, raising the order of convergence, and the limits on the order of convergence. The book will prove useful for mathematicians, physicist, engineers, or academicians in the field of technology and applied mathematics.
Publisher: Elsevier
ISBN: 1483222950
Category : Mathematics
Languages : en
Pages : 297
Book Description
The Theory of Splines and Their Applications discusses spline theory, the theory of cubic splines, polynomial splines of higher degree, generalized splines, doubly cubic splines, and two-dimensional generalized splines. The book explains the equations of the spline, procedures for applications of the spline, convergence properties, equal-interval splines, and special formulas for numerical differentiation or integration. The text explores the intrinsic properties of cubic splines including the Hilbert space interpretation, transformations defined by a mesh, and some connections with space technology concerning the payload of a rocket. The book also discusses the theory of polynomial splines of odd degree which can be approached through algebraically (which depends primarily on the examination in detail of the linear system of equations defining the spline). The theory can also be approached intrinsically (which exploits the consequences of basic integral relations existing between functions and approximating spline functions). The text also considers the second integral relation, raising the order of convergence, and the limits on the order of convergence. The book will prove useful for mathematicians, physicist, engineers, or academicians in the field of technology and applied mathematics.
Curves and Surfaces for Computer Graphics
Author: David Salomon
Publisher: Springer Science & Business Media
ISBN: 0387284524
Category : Computers
Languages : en
Pages : 466
Book Description
Requires only a basic knowledge of mathematics and is geared toward the general educated specialists. Includes a gallery of color images and Mathematica code listings.
Publisher: Springer Science & Business Media
ISBN: 0387284524
Category : Computers
Languages : en
Pages : 466
Book Description
Requires only a basic knowledge of mathematics and is geared toward the general educated specialists. Includes a gallery of color images and Mathematica code listings.
Interpolation and Approximation with Splines and Fractals
Author: Peter Robert Massopust
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 344
Book Description
This textbook is intended to supplement the classical theory of uni- and multivariate splines and their approximation and interpolation properties with those of fractals, fractal functions, and fractal surfaces. This synthesis will complement currently required courses dealing with these topics and expose the prospective reader to some new and deep relationships. In addition to providing a classical introduction to the main issues involving approximation and interpolation with uni- and multivariate splines, cardinal and exponential splines, and their connection to wavelets and multiscale analysis, which comprises the first half of the book, the second half will describe fractals, fractal functions and fractal surfaces, and their properties. This also includes the new burgeoning theory of superfractals and superfractal functions. The theory of splines is well-established but the relationship to fractal functions is novel. Throughout the book, connections between these two apparently different areas will be exposed and presented. In this way, more options are given to the prospective reader who will encounter complex approximation and interpolation problems in real-world modeling. Numerous examples, figures, and exercises accompany the material.
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 344
Book Description
This textbook is intended to supplement the classical theory of uni- and multivariate splines and their approximation and interpolation properties with those of fractals, fractal functions, and fractal surfaces. This synthesis will complement currently required courses dealing with these topics and expose the prospective reader to some new and deep relationships. In addition to providing a classical introduction to the main issues involving approximation and interpolation with uni- and multivariate splines, cardinal and exponential splines, and their connection to wavelets and multiscale analysis, which comprises the first half of the book, the second half will describe fractals, fractal functions and fractal surfaces, and their properties. This also includes the new burgeoning theory of superfractals and superfractal functions. The theory of splines is well-established but the relationship to fractal functions is novel. Throughout the book, connections between these two apparently different areas will be exposed and presented. In this way, more options are given to the prospective reader who will encounter complex approximation and interpolation problems in real-world modeling. Numerous examples, figures, and exercises accompany the material.
An Introduction to Splines for Use in Computer Graphics and Geometric Modeling
Author: Richard H. Bartels
Publisher: Morgan Kaufmann
ISBN: 9781558604001
Category : Computers
Languages : en
Pages : 504
Book Description
As the field of computer graphics develops, techniques for modeling complex curves and surfaces are increasingly important. A major technique is the use of parametric splines in which a curve is defined by piecing together a succession of curve segments, and surfaces are defined by stitching together a mosaic of surface patches. An Introduction to Splines for Use in Computer Graphics and Geometric Modeling discusses the use of splines from the point of view of the computer scientist. Assuming only a background in beginning calculus, the authors present the material using many examples and illustrations with the goal of building the reader's intuition. Based on courses given at the University of California, Berkeley, and the University of Waterloo, as well as numerous ACM Siggraph tutorials, the book includes the most recent advances in computer-aided geometric modeling and design to make spline modeling techniques generally accessible to the computer graphics and geometric modeling communities.
Publisher: Morgan Kaufmann
ISBN: 9781558604001
Category : Computers
Languages : en
Pages : 504
Book Description
As the field of computer graphics develops, techniques for modeling complex curves and surfaces are increasingly important. A major technique is the use of parametric splines in which a curve is defined by piecing together a succession of curve segments, and surfaces are defined by stitching together a mosaic of surface patches. An Introduction to Splines for Use in Computer Graphics and Geometric Modeling discusses the use of splines from the point of view of the computer scientist. Assuming only a background in beginning calculus, the authors present the material using many examples and illustrations with the goal of building the reader's intuition. Based on courses given at the University of California, Berkeley, and the University of Waterloo, as well as numerous ACM Siggraph tutorials, the book includes the most recent advances in computer-aided geometric modeling and design to make spline modeling techniques generally accessible to the computer graphics and geometric modeling communities.
Multivariate Splines
Author: Charles K. Chui
Publisher: SIAM
ISBN: 0898712262
Category : Mathematics
Languages : en
Pages : 192
Book Description
Subject of multivariate splines presented from an elementary point of view; includes many open problems.
Publisher: SIAM
ISBN: 0898712262
Category : Mathematics
Languages : en
Pages : 192
Book Description
Subject of multivariate splines presented from an elementary point of view; includes many open problems.
Handbook of Splines
Author: Gheorghe Micula
Publisher: Springer Science & Business Media
ISBN: 9401153388
Category : Mathematics
Languages : en
Pages : 622
Book Description
The purpose of this book is to give a comprehensive introduction to the theory of spline functions, together with some applications to various fields, emphasizing the significance of the relationship between the general theory and its applications. At the same time, the goal of the book is also to provide new ma terial on spline function theory, as well as a fresh look at old results, being written for people interested in research, as well as for those who are interested in applications. The theory of spline functions and their applications is a relatively recent field of applied mathematics. In the last 50 years, spline function theory has undergone a won derful development with many new directions appearing during this time. This book has its origins in the wish to adequately describe this development from the notion of 'spline' introduced by 1. J. Schoenberg (1901-1990) in 1946, to the newest recent theories of 'spline wavelets' or 'spline fractals'. Isolated facts about the functions now called 'splines' can be found in the papers of L. Euler, A. Lebesgue, G. Birkhoff, J.
Publisher: Springer Science & Business Media
ISBN: 9401153388
Category : Mathematics
Languages : en
Pages : 622
Book Description
The purpose of this book is to give a comprehensive introduction to the theory of spline functions, together with some applications to various fields, emphasizing the significance of the relationship between the general theory and its applications. At the same time, the goal of the book is also to provide new ma terial on spline function theory, as well as a fresh look at old results, being written for people interested in research, as well as for those who are interested in applications. The theory of spline functions and their applications is a relatively recent field of applied mathematics. In the last 50 years, spline function theory has undergone a won derful development with many new directions appearing during this time. This book has its origins in the wish to adequately describe this development from the notion of 'spline' introduced by 1. J. Schoenberg (1901-1990) in 1946, to the newest recent theories of 'spline wavelets' or 'spline fractals'. Isolated facts about the functions now called 'splines' can be found in the papers of L. Euler, A. Lebesgue, G. Birkhoff, J.
Approximation and Modeling with B-Splines
Author: Klaus Hollig
Publisher: SIAM
ISBN: 1611972949
Category : Mathematics
Languages : en
Pages : 228
Book Description
B-splines are fundamental to approximation and data fitting, geometric modeling, automated manufacturing, computer graphics, and numerical simulation. With an emphasis on key results and methods that are most widely used in practice, this textbook provides a unified introduction to the basic components of B-spline theory: approximation methods (mathematics), modeling techniques (engineering), and geometric algorithms (computer science). A supplemental Web site will provide a collection of problems, some with solutions, slides for use in lectures, and programs with demos.
Publisher: SIAM
ISBN: 1611972949
Category : Mathematics
Languages : en
Pages : 228
Book Description
B-splines are fundamental to approximation and data fitting, geometric modeling, automated manufacturing, computer graphics, and numerical simulation. With an emphasis on key results and methods that are most widely used in practice, this textbook provides a unified introduction to the basic components of B-spline theory: approximation methods (mathematics), modeling techniques (engineering), and geometric algorithms (computer science). A supplemental Web site will provide a collection of problems, some with solutions, slides for use in lectures, and programs with demos.