Carbon Dioxide Adsorbents Containing Magnesium Oxide Suitable for Use at High Temperatures

Carbon Dioxide Adsorbents Containing Magnesium Oxide Suitable for Use at High Temperatures PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Adsorption of carbon dioxide from gas streams at temperatures in the range of 300 to 500.degree. C. is carried out with a solid adsorbent containing magnesium oxide, preferably promoted with an alkali metal carbonate or bicarbonate so that the atomic ratio of alkali metal to magnesium is in the range of 0.006 to 2.60. Preferred adsorbents are made from the precipitate formed on addition of alkali metal and carbonate ions to an aqueous solution of a magnesium salt. Atomic ratios of alkali metal to magnesium can be adjusted by washing the precipitate with water. Low surface area adsorbents can be made by dehydration and CO.sub. 2 removal of magnesium hydroxycarbonate, with or without alkali metal promotion. The process is especially valuable in pressure swing adsorption operations.

Carbon Dioxide Adsorbents Containing Magnesium Oxide Suitable for Use at High Temperatures

Carbon Dioxide Adsorbents Containing Magnesium Oxide Suitable for Use at High Temperatures PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Adsorption of carbon dioxide from gas streams at temperatures in the range of 300 to 500.degree. C. is carried out with a solid adsorbent containing magnesium oxide, preferably promoted with an alkali metal carbonate or bicarbonate so that the atomic ratio of alkali metal to magnesium is in the range of 0.006 to 2.60. Preferred adsorbents are made from the precipitate formed on addition of alkali metal and carbonate ions to an aqueous solution of a magnesium salt. Atomic ratios of alkali metal to magnesium can be adjusted by washing the precipitate with water. Low surface area adsorbents can be made by dehydration and CO.sub. 2 removal of magnesium hydroxycarbonate, with or without alkali metal promotion. The process is especially valuable in pressure swing adsorption operations.

Nanocatalysis

Nanocatalysis PDF Author: Vivek Polshettiwar
Publisher: John Wiley & Sons
ISBN: 1118609808
Category : Technology & Engineering
Languages : en
Pages : 670

Get Book Here

Book Description
Exhibiting both homogeneous and heterogeneous catalytic properties, nanocatalysts allow for rapid and selective chemical transformations, with the benefits of excellent product yield and ease of catalyst separation and recovery. This book reviews the catalytic performance and the synthesis and characterization of nanocatalysts, examining the current state of the art and pointing the way towards new avenues of research. Moreover, the authors discuss new and emerging applications of nanocatalysts and nanocatalysis, from pharmaceuticals to fine chemicals to renewable energy to biotransformations. Nanocatalysis features contributions from leading research groups around the world. These contributions reflect a thorough review of the current literature as well as the authors’ first-hand experience designing and synthesizing nanocatalysts and developing new applications for them. The book’s nineteen chapters offer a broad perspective, covering: Nanocatalysis for carbon-carbon and carbon-heteroatom coupling reactions Nanocatalysis for various organic transformations in fine chemical synthesis Nanocatalysis for oxidation, hydrogenation, and other related reactions Nanomaterial-based photocatalysis and biocatalysis Nanocatalysts to produce non-conventional energy such as hydrogen and biofuels Nanocatalysts and nano-biocatalysts in the chemical industry Readers will also learn about the latest spectroscopic and microscopy tools used in advanced characterization methods that shed new light on nanocatalysts and nanocatalysis. Moreover, the authors offer expert advice to help readers develop strategies to improve catalytic performance. Summarizing and reviewing all the most important advances in nanocatalysis over the last two decades, this book explains the many advantages of nanocatalysts over conventional homogeneous and heterogeneous catalysts, providing the information and guidance needed for designing green, sustainable catalytic processes.

Pre-combustion Carbon Dioxide Capture Materials

Pre-combustion Carbon Dioxide Capture Materials PDF Author: Qiang Wang
Publisher: Royal Society of Chemistry
ISBN: 1788011082
Category : Science
Languages : en
Pages : 362

Get Book Here

Book Description
An introduction to the different inorganic adsorbents/sorbents used in pre-combustion carbon dioxide capture.

Sorption Enhanced Reaction Processes

Sorption Enhanced Reaction Processes PDF Author: Alirio Egidio Rodrigues
Publisher: World Scientific
ISBN: 1786343584
Category : Science
Languages : en
Pages : 365

Get Book Here

Book Description
This book investigates the development of sorption enhanced reaction processes (SERPs) with detailed modelling and simulation, design and operation of units. SERPs are processes intensified by combining adsorption and reaction, reaction and membranes or reaction/adsorption/membranes in a single unit in order to overcome thermodynamic limitations of conversion in reversible reactions. The focus here is on gas phase and liquid phase processes involving different technologies, including pressure swing adsorptive reactors, membrane reactors and simulated moving bed reactors. Emphasis is also given to presenting data and practical applications of SERP products.Sorption Enhanced Reaction Processes provides undergraduate and graduate students of chemistry and chemical engineering, researchers and industrial engineers with a clear path towards process development of SERP, whatever the area of application.

Handbook of Clean Energy Systems, 6 Volume Set

Handbook of Clean Energy Systems, 6 Volume Set PDF Author: Jinyue Yan
Publisher: John Wiley & Sons
ISBN: 1118388585
Category : Science
Languages : en
Pages : 4038

Get Book Here

Book Description
The Handbook of Clean Energy Systems brings together an international team of experts to present a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems. Consolidating information which is currently scattered across a wide variety of literature sources, the handbook covers a broad range of topics in this interdisciplinary research field including both fossil and renewable energy systems. The development of intelligent energy systems for efficient energy processes and mitigation technologies for the reduction of environmental pollutants is explored in depth, and environmental, social and economic impacts are also addressed. Topics covered include: Volume 1 - Renewable Energy: Biomass resources and biofuel production; Bioenergy Utilization; Solar Energy; Wind Energy; Geothermal Energy; Tidal Energy. Volume 2 - Clean Energy Conversion Technologies: Steam/Vapor Power Generation; Gas Turbines Power Generation; Reciprocating Engines; Fuel Cells; Cogeneration and Polygeneration. Volume 3 - Mitigation Technologies: Carbon Capture; Negative Emissions System; Carbon Transportation; Carbon Storage; Emission Mitigation Technologies; Efficiency Improvements and Waste Management; Waste to Energy. Volume 4 - Intelligent Energy Systems: Future Electricity Markets; Diagnostic and Control of Energy Systems; New Electric Transmission Systems; Smart Grid and Modern Electrical Systems; Energy Efficiency of Municipal Energy Systems; Energy Efficiency of Industrial Energy Systems; Consumer Behaviors; Load Control and Management; Electric Car and Hybrid Car; Energy Efficiency Improvement. Volume 5 - Energy Storage: Thermal Energy Storage; Chemical Storage; Mechanical Storage; Electrochemical Storage; Integrated Storage Systems. Volume 6 - Sustainability of Energy Systems: Sustainability Indicators, Evaluation Criteria, and Reporting; Regulation and Policy; Finance and Investment; Emission Trading; Modeling and Analysis of Energy Systems; Energy vs. Development; Low Carbon Economy; Energy Efficiencies and Emission Reduction. Key features: Comprising over 3,500 pages in 6 volumes, HCES presents a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems, consolidating a wealth of information which is currently scattered across a wide variety of literature sources. In addition to renewable energy systems, HCES also covers processes for the efficient and clean conversion of traditional fuels such as coal, oil and gas, energy storage systems, mitigation technologies for the reduction of environmental pollutants, and the development of intelligent energy systems. Environmental, social and economic impacts of energy systems are also addressed in depth. Published in full colour throughout. Fully indexed with cross referencing within and between all six volumes. Edited by leading researchers from academia and industry who are internationally renowned and active in their respective fields. Published in print and online. The online version is a single publication (i.e. no updates), available for one-time purchase or through annual subscription.

Investigation of Adsorbent-based Warm Carbon Dioxide Capture Technology for IGCC System

Investigation of Adsorbent-based Warm Carbon Dioxide Capture Technology for IGCC System PDF Author: Zan Liu (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 146

Get Book Here

Book Description
Integrated gasification combined cycle with CO2 capture and sequestration (IGCC-CCS) emerges as one of the most promising technologies for reducing CO2 emission from coal power plant without reducing thermal efficiency significantly. However the high capital cost of these plants has limited their deployment. The current solvent-based low-temperature CO2 capture process (Selexol process) is energy and capital intensive contributing to the problem. Sorbent-based warm CO2 capture has been predicted to be a key enabling technology for lowering down the costs of IGCC-CCS. However, no commercial adsorbents or processes exist for these warm CO2 separations. My thesis work has been devoted to developing a solid sorbent and CO2 capture process which can capture CO2 at an elevated temperature in IGCC system. By combining experimental methods and quantum calculation, I have successfully identified and invented one new sorbent material. The sorbent for warm CO2 capture containing magnesium oxide was developed using incipient wetness impregnation. The reversible adsorption isotherm, cyclic stability, and sorption rate were measured using a custom-built high pressure microbalance system and a thermogravimetric analyzer. Experimental data indicate the sorbent has a fairly large regenerable capacity in 180-240 °C temperature range, fast kinetics, low heat of adsorption, and stable working capacity for at least 84 cycles. The new sorbent performs better than synthetic hydrotalcite and K2CO3-promoted hydrotalcite in the temperature range of interest. To assess the applicability of CO2 removal technology to IGCC via a warm pressure swing adsorption (PSA) process based on our newly invented sorbent which has good cyclic sorption-desorption performance at an elevated temperature, a 16-step warm PSA process was simulated using Aspen Adsorption based on the real sorbent properties. I used the model to fully explore the intercorrelation between hydrogen recovery, CO2 capture percentage, regeneration pressure of sorbent, and steam requirement. Their tradeoff effects on IGCC efficiency were investigated by integrating the PSA process into the plant-wide IGCC simulation using Aspen Plus. On the basis of our analysis, IGCC/warm PSA using our new sorbent can produce slightly higher thermal efficiencies than IGCC/cold Selexol. In order to achieve this, warm PSA needs a narrow range of process parameters to have a good balance between the hydrogen loss, steam consumption and work requirement for CO2 compression. Sensitivity analysis is finally conducted to point out the future direction for making warm syngas cleanup more applicable. Further research is needed toward synthesizing new sorbent materials with higher working capacity and improved mass transfer, a better PSA configuration with higher H2 recovery and less steam consumption, new desulfurization process with reduced H2 consumption, and better heat integration. The development in this research would help further improving the efficiency and economics of IGCC/CCS. Overall, my thesis work provides a rigorous analysis framework for identifying and assessing warm CO2 capture by sorbents in an IGCC system. This adsorbent-based warm CO2 capture technology developed in my work can potentially help make IGCC/CCS more affordable and acceptable.

Functional Materials for Sustainable Energy Applications

Functional Materials for Sustainable Energy Applications PDF Author: J A Kilner
Publisher: Elsevier
ISBN: 0857096370
Category : Technology & Engineering
Languages : en
Pages : 715

Get Book Here

Book Description
Global demand for low cost, efficient and sustainable energy production is ever increasing. Driven by recent discoveries and innovation in the science and technology of materials, applications based on functional materials are becoming increasingly important. Functional materials for sustainable energy applications provides an essential guide to the development and application of these materials in sustainable energy production.Part one reviews functional materials for solar power, including silicon-based, thin-film, and dye sensitized photovoltaic solar cells, thermophotovoltaic device modelling and photoelectrochemical cells. Part two focuses on functional materials for hydrogen production and storage. Functional materials for fuel cells are then explored in part three where developments in membranes, catalysts and membrane electrode assemblies for polymer electrolyte and direct methanol fuel cells are discussed, alongside electrolytes and ion conductors, novel cathodes, anodes, thin films and proton conductors for solid oxide fuel cells. Part four considers functional materials for demand reduction and energy storage, before the book concludes in part five with an investigation into computer simulation studies of functional materials.With its distinguished editors and international team of expert contributors, Functional materials for sustainable energy applications is an indispensable tool for anyone involved in the research, development, manufacture and application of materials for sustainable energy production, including materials engineers, scientists and academics in the rapidly developing, interdisciplinary field of sustainable energy. - An essential guide to the development and application of functional materials in sustainable energy production - Reviews functional materials for solar power - Focuses on functional materials for hydrogen production and storage, fuel cells, demand reduction and energy storage

Official Gazette of the United States Patent and Trademark Office

Official Gazette of the United States Patent and Trademark Office PDF Author: United States. Patent and Trademark Office
Publisher:
ISBN:
Category : Patents
Languages : en
Pages : 1512

Get Book Here

Book Description


Index of Patents Issued from the United States Patent and Trademark Office

Index of Patents Issued from the United States Patent and Trademark Office PDF Author:
Publisher:
ISBN:
Category : Patents
Languages : en
Pages : 4402

Get Book Here

Book Description


Activated Carbon Surfaces in Environmental Remediation

Activated Carbon Surfaces in Environmental Remediation PDF Author: Teresa J. Bandosz
Publisher: Elsevier
ISBN: 0080455956
Category : Technology & Engineering
Languages : en
Pages : 587

Get Book Here

Book Description
Activated Carbon Surfaces in Environmental Remediation provides a comprehensive summary of the environmental applications of activated carbons. In order to understand the removal of contaminants and pollutants on activated carbons, the theoretical bases of adsorption phenomena are discussed. The effects of pore structure and surface chemistry are also addressed from both science and engineering perspectives. Each chapter provides examples of real applications with an emphasis on the role of the carbon surface in adsorption or reactive adsorption. The practical aspects addressed in this book cover the broad spectrum of applications from air and water cleaning and energy storage to warfare gas removal and biomedical applications. This book can serve as a handbook or reference book for graduate students, researchers and practitioners with an interest in filtration, water treatment, adsorbents and air cleaning, in addition to environmental policies and regulations. Addresses fundamental carbon science and how it relates to applications of carbon surfaces Describes the broad spectrum of activated carbon applications in environmental remediation Serves as a handbook or reference book for graduate students, researchers and practitioners in the field