Capturing the Energy Absorbing Mechanisms of Composite Structures Under Crash Loading

Capturing the Energy Absorbing Mechanisms of Composite Structures Under Crash Loading PDF Author: Bonnie Wade
Publisher:
ISBN:
Category : Absorption
Languages : en
Pages : 368

Get Book Here

Book Description
As fiber reinforced composite material systems become increasingly utilized in primary aircraft and automotive structures, the need to understand their contribution to the crash worthiness of the structure is of great interest to meet safety certification requirements. The energy absorbing behavior of a composite structure, however, is not easily predicted due to the great complexity of the failure mechanisms that occur within the material. Challenges arise both in the experimental characterization and in the numerical modeling of the material/structure combination. At present, there is no standardized test method to characterize the energy absorbing capability of composite materials to aide crash worthy structural design. In addition, although many commercial finite element analysis codes exist and offer a means to simulate composite failure initiation and propagation, these models are still under development and refinement. As more metallic structures are replaced by composite structures, the need for both experimental guidelines to characterize the energy absorbing capability of a composite structure, as well as guidelines for using numerical tools to simulate composite materials in crash conditions has become a critical matter. This body of research addresses both the experimental characterization of the energy absorption mechanisms occurring in composite materials during crushing, as well as the numerical simulation of composite materials undergoing crushing. In the experimental investigation, the specific energy absorption (SEA) of a composite material system is measured using a variety of test element geometries, such as corrugated plates and tubes. Results from several crush experiments reveal that SEA is not a constant material property for laminated composites, and varies significantly with the geometry of the test specimen used. The variation of SEA measured for a single material system requires that crush test data must be generated for a range of different test geometries in order to define the range of its energy absorption capability. Further investigation from the crush tests has led to the development of a direct link between geometric features of the crush specimen and its resulting SEA. Through micrographic analysis, distinct failure modes are shown to be guided by the geometry of the specimen, and subsequently are shown to directly influence energy absorption. A new relationship between geometry, failure mode, and SEA has been developed. This relationship has allowed for the reduction of the element-level crush testing requirement to characterize the composite material energy absorption capability. In the numerical investigation, the LS-DYNA composite material model MAT54 is selected for its suitability to model composite materials beyond failure determination, as required by crush simulation, and its capability to remain within the scope of ultimately using this model for large-scale crash simulation. As a result of this research, this model has been thoroughly investigated in depth for its capacity to simulate composite materials in crush, and results from several simulations of the element-level crush experiments are presented. A modeling strategy has been developed to use MAT54 for crush simulation which involves using the experimental data collected from the coupon- and element-level crush tests to directly calibrate the crush damage parameter in MAT54 such that it may be used in higher-level simulations. In addition, the source code of the material model is modified to improve upon its capability. The modifications include improving the elastic definition such that the elastic response to multi-axial load cases can be accurately portrayed simultaneously in each element, which is a capability not present in other composite material models. Modifications made to the failure determination and post-failure model have newly emphasized the post-failure stress degradation scheme rather than the failure criterion which is traditionally considered the most important composite material model definition for crush simulation. The modification efforts have also validated the use of the MAT54 failure criterion and post-failure model for crash modeling when its capabilities and limitations are well understood, and for this reason guidelines for using MAT54 for composite crush simulation are presented. This research has effectively (a) developed and demonstrated a procedure that defines a set of experimental crush results that characterize the energy absorption capability of a composite material system, (b) used the experimental results in the development and refinement of a composite material model for crush simulation, (c) explored modifying the material model to improve its use in crush modeling, and (d) provided experimental and modeling guidelines for composite structures under crush at the element-level in the scope of the Building Block Approach.

Capturing the Energy Absorbing Mechanisms of Composite Structures Under Crash Loading

Capturing the Energy Absorbing Mechanisms of Composite Structures Under Crash Loading PDF Author: Bonnie Wade
Publisher:
ISBN:
Category : Absorption
Languages : en
Pages : 368

Get Book Here

Book Description
As fiber reinforced composite material systems become increasingly utilized in primary aircraft and automotive structures, the need to understand their contribution to the crash worthiness of the structure is of great interest to meet safety certification requirements. The energy absorbing behavior of a composite structure, however, is not easily predicted due to the great complexity of the failure mechanisms that occur within the material. Challenges arise both in the experimental characterization and in the numerical modeling of the material/structure combination. At present, there is no standardized test method to characterize the energy absorbing capability of composite materials to aide crash worthy structural design. In addition, although many commercial finite element analysis codes exist and offer a means to simulate composite failure initiation and propagation, these models are still under development and refinement. As more metallic structures are replaced by composite structures, the need for both experimental guidelines to characterize the energy absorbing capability of a composite structure, as well as guidelines for using numerical tools to simulate composite materials in crash conditions has become a critical matter. This body of research addresses both the experimental characterization of the energy absorption mechanisms occurring in composite materials during crushing, as well as the numerical simulation of composite materials undergoing crushing. In the experimental investigation, the specific energy absorption (SEA) of a composite material system is measured using a variety of test element geometries, such as corrugated plates and tubes. Results from several crush experiments reveal that SEA is not a constant material property for laminated composites, and varies significantly with the geometry of the test specimen used. The variation of SEA measured for a single material system requires that crush test data must be generated for a range of different test geometries in order to define the range of its energy absorption capability. Further investigation from the crush tests has led to the development of a direct link between geometric features of the crush specimen and its resulting SEA. Through micrographic analysis, distinct failure modes are shown to be guided by the geometry of the specimen, and subsequently are shown to directly influence energy absorption. A new relationship between geometry, failure mode, and SEA has been developed. This relationship has allowed for the reduction of the element-level crush testing requirement to characterize the composite material energy absorption capability. In the numerical investigation, the LS-DYNA composite material model MAT54 is selected for its suitability to model composite materials beyond failure determination, as required by crush simulation, and its capability to remain within the scope of ultimately using this model for large-scale crash simulation. As a result of this research, this model has been thoroughly investigated in depth for its capacity to simulate composite materials in crush, and results from several simulations of the element-level crush experiments are presented. A modeling strategy has been developed to use MAT54 for crush simulation which involves using the experimental data collected from the coupon- and element-level crush tests to directly calibrate the crush damage parameter in MAT54 such that it may be used in higher-level simulations. In addition, the source code of the material model is modified to improve upon its capability. The modifications include improving the elastic definition such that the elastic response to multi-axial load cases can be accurately portrayed simultaneously in each element, which is a capability not present in other composite material models. Modifications made to the failure determination and post-failure model have newly emphasized the post-failure stress degradation scheme rather than the failure criterion which is traditionally considered the most important composite material model definition for crush simulation. The modification efforts have also validated the use of the MAT54 failure criterion and post-failure model for crash modeling when its capabilities and limitations are well understood, and for this reason guidelines for using MAT54 for composite crush simulation are presented. This research has effectively (a) developed and demonstrated a procedure that defines a set of experimental crush results that characterize the energy absorption capability of a composite material system, (b) used the experimental results in the development and refinement of a composite material model for crush simulation, (c) explored modifying the material model to improve its use in crush modeling, and (d) provided experimental and modeling guidelines for composite structures under crush at the element-level in the scope of the Building Block Approach.

Crashworthiness of Composite Thin-Walled Structures

Crashworthiness of Composite Thin-Walled Structures PDF Author: A.G. Mamalis
Publisher: Routledge
ISBN: 1351457543
Category : Technology & Engineering
Languages : en
Pages : 272

Get Book Here

Book Description
FROM THE INTRODUCTION Vehicle crashworthiness has been improving in recent years with attention mainly directed towards reducing the impact of the crash on the passengers. Effort has been spent in experimental research and in establishing safe theoretical design criteria on the mechanics of crumpling, providing to the engineers the ability to design vehicle structures so that the maximum amount of energy will dissipate while the material surrounding the passenger compartment is deformed, thus protecting the people inside. During the last decade the attention given to crashworthiness and crash energy management has been centered on composite structures. The main advantages of fibre reinforced composite materials over more conventional isotropic materials, are the very high specific strengths and specific stiffness which can be achieved. Moreover, with composites, the designer can vary the type of fibre, matrix and fibre orientation to produce composites with proved material properties. Besides the perspective of reduced weight, design flexibility and low fabrication costs, composite materials offer a considerable potential for lightweight energy absorbing structures; these facts attract the attention of the automotive and aircraft industry owing to the increased use of composite materials in various applications, such as frame rails used in the apron construction of a car body and the subfloor of an aircraft, replacing the conventional materials used. Our monograph is intended to provide an introduction to this relatively new topic of structural crashworthiness for professional engineers. It will introduce them to terms and concepts of it and acquaint them with some sources of literature about it. We believe that our survey constitutes a reasonably well-balanced synopsis of the topic.

Crash Energy Absorption of Kevlar Fabric Composite Structures

Crash Energy Absorption of Kevlar Fabric Composite Structures PDF Author: Nageswara Rao Janapala
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Fiber reinforced composites currently being used in myriad applications including aerospace, defense and wind industries due to their light weight, higher specific strength and stiffness, compared to traditional metallic structures. For crashworthiness applications, advanced textile composites such as fabrics and braids, are showing superior performance over traditional tape laminated composites structures. Kevlar fabric composites, in particular, are offering a great potential as the next generation energy absorbing material for the rotorcraft applications. Unfortunately, none of the existing material models can predict the behavior of Kevlar fabric composites for the crashworthiness applications. The prime objective of this investigation is to develop a computationally efficient and robust material model based on a unified unit-cell approach to simulate the crush response of tubular and honeycomb structures made of Kevlar fabric composites under quasi-static and dynamic loading conditions. Tests are conducted at various levels to understand the constitutive behavior of Kevlar fabric composites. Based on experimental observations, a physics based material model is developed. This material model is then implemented in commercial finite element software such as LS-DYNA and ABAQUS as a User Material (UMAT) Routine. The material model is built by considering majority of length scales in the composites: Kevlar composite tows at the meso-scale, a fabric unit cell at macro-scale and overall structural level. The material model identifies a smallest repetitive unit (i.e. unit-cell) within the composite material. The tow geometry within the unit-cell is represented using a simplified three-dimensional description. An elastic-plastic constitutive law is developed to simulate the behavior of Kevlar composite tows. Efficient homogenization scheme along with appropriate failure criteria is implemented to calculate the effective quantities such as stiffness and stress and predict the response of the unit-cell. Coupon tests are conducted on unidirectional Kevlar and plain woven Kevlar fabric flat plaques. The unidirectional coupon tests are conducted to characterize the material properties such as stiffness, strength and plastic parameters necessary as input to the material model. The plain woven fabric coupon tests are conducted to verify the initial stiffness, strength and damage progression predictions of the model at the ply-level. Several tubes with square and circular cross-section are crushed quasi-statically using both flat-plate and plug-type crush initiators. During crushing, Kevlar fabric composite tubes buckled locally and failed progressively by forming folds similar to aluminum tubes. Test results show that the failure mode and overall energy absorption is not affected significantly by the change in fabric angle or the method of crushing. Dynamic crush tests on Kevlar fabric honeycomb structures also exhibited global folding failure mechanism with very little fiber fracture. During crushing, honeycombs typically reach a peak load and then crush at constant, sustained load which is a characteristic of an ideal crash energy behavior. The material module is verified by carrying out simulations at different levels. Coupon test data is initially validated for both the initial stiffness and the strength predictions. Tubular and honeycomb crush data is validated for the deformation behavior, the failure mechanism and the crash energy absorption characteristics. Strong correlation between simulation and experiments suggests that the model can be used as state-of-the-art computational tool for predicting the crushing behavior of tubular and honeycomb structures made of Kevlar fabric composites.

ICCS19 19th International Conference on Composite Structures

ICCS19 19th International Conference on Composite Structures PDF Author: Antonio J.M. Ferreira
Publisher: Società Editrice Esculapio
ISBN: 8874889771
Category : Technology & Engineering
Languages : en
Pages : 212

Get Book Here

Book Description
Nowadays, it is quite easy to see various applications of fibrous composites, functionally graded materials, laminated composite, nano-structured reinforcement, morphing composites, in many engineering fields, such as aerospace, mechanical, naval and civil engineering. The increase in the use of composite structures in different engineering practices justify the present international meeting where researches from every part of the globe can share and discuss the recent advancements regarding the use of standard structural components within advanced applications such as buckling, vibrations, repair, reinforcements, concrete, composite laminated materials and more recent metamaterials. For this reason, the establishment of this 19th edition of International Conference on Composite Structures has appeared appropriate to continue what has been begun during the previous editions. ICCS wants to be an occasion for many researchers from each part of the globe to meet and discuss about the recent advancements regarding the use of composite structures, sandwich panels, nanotechnology, bio-composites, delamination and fracture, experimental methods, manufacturing and other countless topics that have filled many sessions during this conference. As a proof of this event, which has taken place in Porto (Portugal), selected plenary and keynote lectures have been collected in the present book.

Structural Crashworthiness

Structural Crashworthiness PDF Author: Norman Jones
Publisher: Butterworth-Heinemann
ISBN:
Category : Science
Languages : en
Pages : 472

Get Book Here

Book Description


Crash-energy Absorbing Composite Structure and Method of Fabrication

Crash-energy Absorbing Composite Structure and Method of Fabrication PDF Author: Sotiris Kellas
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages :

Get Book Here

Book Description
"A stand-alone, crash-energy absorbing structure and fabrication method are provided. A plurality of adjoining rigid cells are each constructed of resin-cured fiber reinforcement and are arranged in a geometric configuration. The fiber reinforcement can be in the form of a fabric or braided fibers wrapped about a core that is either left in place or removed from the ultimate cured structure. The geometric configuration of cells is held together with more fiber reinforcement (in the form of fabric or braided fibers) in order to integrate the cells in the geometric configuration. The additional fiber reinforcement is resin-cured to the cells. Curing of the cells and ultimate structure can occur in a single step. In applications where post-crash integrity is necessary, ductile fibers can be used to integrate the cells in the geometric configuration. The novelty of the present invention is that simple fabrication techniques are used to create structures that can be formed in a variety of net stable shapes without additional reinforcement and can withstand combined loading while crushing in a desired direction."--Page i.

Foreign Object Impact and Energy Absorbing Structure

Foreign Object Impact and Energy Absorbing Structure PDF Author: IMechE (Institution of Mechanical Engineers)
Publisher: Wiley
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 142

Get Book Here

Book Description
These papers discuss the experimental and theoretical modelling studies of impact damage sustained by structures in service, together with materials and structural design studies aimed at energy absorption or damage tolerance.

Dynamic Failure of Composite and Sandwich Structures

Dynamic Failure of Composite and Sandwich Structures PDF Author: Serge Abrate
Publisher: Springer
ISBN: 9789400753280
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
This book presents a broad view of the current state of the art regarding the dynamic response of composite and sandwich structures subjected to impacts and explosions. Each chapter combines a thorough assessment of the literature with original contributions made by the authors. The first section deals with fluid-structure interactions in marine structures. The first chapter focuses on hull slamming and particularly cases in which the deformation of the structure affects the motion of the fluid during the water entry of flexible hulls. Chapter 2 presents an extensive series of tests underwater and in the air to determine the effects of explosions on composite and sandwich structures. Full-scale structures were subjected to significant explosive charges, and such results are extremely rare in the open literature. Chapter 3 describes a simple geometrical theory of diffraction for describing the interaction of an underwater blast wave with submerged structures. The second section addresses the problem of impact on laminated composite structures with chapters devoted to ballistic impacts on pre-stressed composite structures, tests developed to simulate dynamic failure in marine structures, damage mechanisms and energy absorption in low velocity impacts, perforation, the numerical simulation of intra and inter-ply damage during impact, and hail impact on laminated composites. Sandwich structures with laminated facings are considered in Section 3 with chapters dealing with the discrete modeling of honeycomb core during the indentation of sandwich structures, the behavior of fold core sandwich structures during impact, and impact on helicopter blades. The fourth section consists of two chapters presenting experimental results and numerical simulation of composite structures subjected to crash. This volume is intended for advanced undergraduate and graduate students, researchers, and engineers interested and involved in analysis and design of composite structures.

Fibrous Composites in Structural Design

Fibrous Composites in Structural Design PDF Author: Edward M. Lenoe
Publisher: Springer Science & Business Media
ISBN: 1468410334
Category : Technology & Engineering
Languages : en
Pages : 858

Get Book Here

Book Description
The Fourth Conference on Fibrous Composites in Structural Design was a successor to the First-to-Third Conferences on Fibrous Composites in Flight Vehicle Design sponsored by the Air Force (First and Second Conferences, September 1973 and May 1974) and by NASA (Third Conference, November 1975) which were aimed at focusing national attention on flight vehicle applications of a new class of fiber reinforced materials, the advanced com posites, which afforded weight savings and other advantages which had not been previously available. The Fourth Conference, held at San Diego, California, 14-17 November 1978, was the fi rst of these conferences to be jointly sponsored by the Army, Navy and Ai r Force together with NASA, as well as being the first to give attention to non-aerospace applications of fiber reinforced composites. While the design technology for aerospace applications has reached a state of relative maturity, other areas of application such as mi litary bridging, flywheel energy storage systems, ship and surface vessel components and ground vehicle components are in an early stage of development, and it was an important objective to pinpoint where careful attention to structural design was needed in such applications to achfeve maximum structural performance payoff together with a high level of reliability and attractive economics.

Unique Failure Behavior of Metal/Composite Aircraft Structural Components Under Crash Type Loads

Unique Failure Behavior of Metal/Composite Aircraft Structural Components Under Crash Type Loads PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781722923341
Category :
Languages : en
Pages : 32

Get Book Here

Book Description
Failure behavior results are presented on some of the crash dynamics research conducted with concepts of aircraft elements and substructure which have not necessarily been designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash type loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the thread of similarity in behavior is telling the designer and dynamists a great deal about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures. Carden, Huey D. Langley Research Center RTOP 505-63-01-11...