Calculus for the Life Sciences

Calculus for the Life Sciences PDF Author: James L. Cornette
Publisher: MAA Press
ISBN: 9781614446156
Category :
Languages : en
Pages : 713

Get Book Here

Book Description
Freshman and sophomore life sciences students respond well to the modeling approach to calculus, difference equations, and differential equations presented in this book. Examples of population dynamics, pharmacokinetics, and biologically relevant physical processes are introduced in Chapter 1, and these and other life sciences topics are developed throughout the text. The students should have studied algebra, geometry, and trigonometry, but may be life sciences students because they have not enjoyed their previous mathematics courses.

Calculus for the Life Sciences

Calculus for the Life Sciences PDF Author: James L. Cornette
Publisher: MAA Press
ISBN: 9781614446156
Category :
Languages : en
Pages : 713

Get Book Here

Book Description
Freshman and sophomore life sciences students respond well to the modeling approach to calculus, difference equations, and differential equations presented in this book. Examples of population dynamics, pharmacokinetics, and biologically relevant physical processes are introduced in Chapter 1, and these and other life sciences topics are developed throughout the text. The students should have studied algebra, geometry, and trigonometry, but may be life sciences students because they have not enjoyed their previous mathematics courses.

Calculus for the Life Sciences: A Modeling Approach

Calculus for the Life Sciences: A Modeling Approach PDF Author: James L. Cornette
Publisher: American Mathematical Soc.
ISBN: 1470451425
Category : Mathematics
Languages : en
Pages : 736

Get Book Here

Book Description
Calculus for the Life Sciences is an entire reimagining of the standard calculus sequence with the needs of life science students as the fundamental organizing principle. Those needs, according to the National Academy of Science, include: the mathematical concepts of change, modeling, equilibria and stability, structure of a system, interactions among components, data and measurement, visualization, and algorithms. This book addresses, in a deep and significant way, every concept on that list. The book begins with a primer on modeling in the biological realm and biological modeling is the theme and frame for the entire book. The authors build models of bacterial growth, light penetration through a column of water, and dynamics of a colony of mold in the first few pages. In each case there is actual data that needs fitting. In the case of the mold colony that data is a set of photographs of the colony growing on a ruled sheet of graph paper and the students need to make their own approximations. Fundamental questions about the nature of mathematical modeling—trying to approximate a real-world phenomenon with an equation—are all laid out for the students to wrestle with. The authors have produced a beautifully written introduction to the uses of mathematics in the life sciences. The exposition is crystalline, the problems are overwhelmingly from biology and interesting and rich, and the emphasis on modeling is pervasive. An instructor's manual for this title is available electronically to those instructors who have adopted the textbook for classroom use. Please send email to [email protected] for more information. Online question content and interactive step-by-step tutorials are available for this title in WebAssign. WebAssign is a leading provider of online instructional tools for both faculty and students.

Modeling Life

Modeling Life PDF Author: Alan Garfinkel
Publisher: Springer
ISBN: 3319597310
Category : Mathematics
Languages : en
Pages : 456

Get Book Here

Book Description
This book develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behavior. From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?

Calculus for the Life Sciences

Calculus for the Life Sciences PDF Author: James L. Cornette
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages :

Get Book Here

Book Description


Mathematics for the Life Sciences

Mathematics for the Life Sciences PDF Author: Erin N. Bodine
Publisher: Princeton University Press
ISBN: 0691150729
Category : Mathematics
Languages : en
Pages : 630

Get Book Here

Book Description
An accessible undergraduate textbook on the essential math concepts used in the life sciences The life sciences deal with a vast array of problems at different spatial, temporal, and organizational scales. The mathematics necessary to describe, model, and analyze these problems is similarly diverse, incorporating quantitative techniques that are rarely taught in standard undergraduate courses. This textbook provides an accessible introduction to these critical mathematical concepts, linking them to biological observation and theory while also presenting the computational tools needed to address problems not readily investigated using mathematics alone. Proven in the classroom and requiring only a background in high school math, Mathematics for the Life Sciences doesn't just focus on calculus as do most other textbooks on the subject. It covers deterministic methods and those that incorporate uncertainty, problems in discrete and continuous time, probability, graphing and data analysis, matrix modeling, difference equations, differential equations, and much more. The book uses MATLAB throughout, explaining how to use it, write code, and connect models to data in examples chosen from across the life sciences. Provides undergraduate life science students with a succinct overview of major mathematical concepts that are essential for modern biology Covers all the major quantitative concepts that national reports have identified as the ideal components of an entry-level course for life science students Provides good background for the MCAT, which now includes data-based and statistical reasoning Explicitly links data and math modeling Includes end-of-chapter homework problems, end-of-unit student projects, and select answers to homework problems Uses MATLAB throughout, and MATLAB m-files with an R supplement are available online Prepares students to read with comprehension the growing quantitative literature across the life sciences A solutions manual for professors and an illustration package is available

Mathematics in Medicine and the Life Sciences

Mathematics in Medicine and the Life Sciences PDF Author: Frank C. Hoppensteadt
Publisher: Springer Science & Business Media
ISBN: 1475741316
Category : Mathematics
Languages : en
Pages : 257

Get Book Here

Book Description
The aim of this book is to introduce the subject of mathematical modeling in the life sciences. It is intended for students of mathematics, the physical sciences, and engineering who are curious about biology. Additionally, it will be useful to students of the life sciences and medicine who are unsatisfied with mere description and who seek an understanding of biological mechanism and dynamics through the use of mathematics. The book will be particularly useful to premedical students, because it will introduce them not only to a collection of mathematical methods but also to an assortment of phenomena involving genetics, epidemics, and the physiology of the heart, lung, and kidney. Because of its introductory character, mathematical prerequisites are kept to a minimum; they involve only what is usually covered in the first semester of a calculus sequence. The authors have drawn on their extensive experience as modelers to select examples which are simple enough to be understood at this elementary level and yet realistic enough to capture the essence of significant biological phenomena drawn from the areas of population dynamics and physiology. Because the models presented are realistic, the book can serve not only as an introduction to mathematical methods but also as a mathematical introduction to the biological material itself. For the student, who enjoys mathematics, such an introduction will be far more stimulating and satisfying than the purely descriptive approach that is traditional in the biological sciences.

Modeling and Simulation in Medicine and the Life Sciences

Modeling and Simulation in Medicine and the Life Sciences PDF Author: Frank C. Hoppensteadt
Publisher: Springer Science & Business Media
ISBN: 0387215719
Category : Mathematics
Languages : en
Pages : 362

Get Book Here

Book Description
The result of lectures given by the authors at New York University, the University of Utah, and Michigan State University, the material is written for students who have had only one term of calculus, but it contains material that can be used in modeling courses in applied mathematics at all levels through early graduate courses. Numerous exercises are given as well as solutions to selected exercises, so as to lead readers to discover interesting extensions of that material. Throughout, illustrations depict physiological processes, population biology phenomena, corresponding models, and the results of computer simulations. Topics covered range from population phenomena to demographics, genetics, epidemics and dispersal; in physiological processes, including the circulation, gas exchange in the lungs, control of cell volume, the renal counter-current multiplier mechanism, and muscle mechanics; to mechanisms of neural control. Each chapter is graded in difficulty, so a reading of the first parts of each provides an elementary introduction to the processes and their models.

Mathematics for the Life Sciences

Mathematics for the Life Sciences PDF Author: Glenn Ledder
Publisher: Springer Science & Business Media
ISBN: 1461472768
Category : Mathematics
Languages : en
Pages : 444

Get Book Here

Book Description
​ ​​ Mathematics for the Life Sciences provides present and future biologists with the mathematical concepts and tools needed to understand and use mathematical models and read advanced mathematical biology books. It presents mathematics in biological contexts, focusing on the central mathematical ideas, and providing detailed explanations. The author assumes no mathematics background beyond algebra and precalculus. Calculus is presented as a one-chapter primer that is suitable for readers who have not studied the subject before, as well as readers who have taken a calculus course and need a review. This primer is followed by a novel chapter on mathematical modeling that begins with discussions of biological data and the basic principles of modeling. The remainder of the chapter introduces the reader to topics in mechanistic modeling (deriving models from biological assumptions) and empirical modeling (using data to parameterize and select models). The modeling chapter contains a thorough treatment of key ideas and techniques that are often neglected in mathematics books. It also provides the reader with a sophisticated viewpoint and the essential background needed to make full use of the remainder of the book, which includes two chapters on probability and its applications to inferential statistics and three chapters on discrete and continuous dynamical systems. The biological content of the book is self-contained and includes many basic biology topics such as the genetic code, Mendelian genetics, population dynamics, predator-prey relationships, epidemiology, and immunology. The large number of problem sets include some drill problems along with a large number of case studies. The latter are divided into step-by-step problems and sorted into the appropriate section, allowing readers to gradually develop complete investigations from understanding the biological assumptions to a complete analysis.

Biology in Time and Space

Biology in Time and Space PDF Author: James P. Keener
Publisher:
ISBN: 9781470464141
Category : Biomathematics
Languages : en
Pages :

Get Book Here

Book Description


Mathematical Methods in Biology

Mathematical Methods in Biology PDF Author: J. David Logan
Publisher: John Wiley & Sons
ISBN: 0470525878
Category : Science
Languages : en
Pages : 437

Get Book Here

Book Description
A one-of-a-kind guide to using deterministic and probabilistic methods for solving problems in the biological sciences Highlighting the growing relevance of quantitative techniques in scientific research, Mathematical Methods in Biology provides an accessible presentation of the broad range of important mathematical methods for solving problems in the biological sciences. The book reveals the growing connections between mathematics and biology through clear explanations and specific, interesting problems from areas such as population dynamics, foraging theory, and life history theory. The authors begin with an introduction and review of mathematical tools that are employed in subsequent chapters, including biological modeling, calculus, differential equations, dimensionless variables, and descriptive statistics. The following chapters examine standard discrete and continuous models using matrix algebra as well as difference and differential equations. Finally, the book outlines probability, statistics, and stochastic methods as well as material on bootstrapping and stochastic differential equations, which is a unique approach that is not offered in other literature on the topic. In order to demonstrate the application of mathematical methods to the biological sciences, the authors provide focused examples from the field of theoretical ecology, which serve as an accessible context for study while also demonstrating mathematical skills that are applicable to many other areas in the life sciences. The book's algorithms are illustrated using MATLAB®, but can also be replicated using other software packages, including R, Mathematica®, and Maple; however, the text does not require any single computer algebra package. Each chapter contains numerous exercises and problems that range in difficulty, from the basic to more challenging, to assist readers with building their problem-solving skills. Selected solutions are included at the back of the book, and a related Web site features supplemental material for further study. Extensively class-tested to ensure an easy-to-follow format, Mathematical Methods in Biology is an excellent book for mathematics and biology courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for researchers and professionals working in the fields of biology, ecology, and biomathematics.