Calculations on nonlinear optical properties for large systems

Calculations on nonlinear optical properties for large systems PDF Author: Feng Long Gu
Publisher: Springer
ISBN: 3319110683
Category : Science
Languages : en
Pages : 106

Get Book Here

Book Description
For design purposes one needs to relate the structure of proposed materials to their NLO (nonlinear optical) and other properties, which is a situation where theoretical approaches can be very helpful in providing suggestions for candidate systems that subsequently can be synthesized and studied experimentally. This brief describes the quantum-mechanical treatment of the response to one or more external oscillating electric fields for molecular and macroscopic, crystalline systems. To calculate NLO properties of large systems, a linear scaling generalized elongation method for the efficient and accurate calculation is introduced. The reader should be aware that this treatment is particularly feasible for complicated three-dimensional and/or delocalized systems that are intractable when applied to conventional or other linear scaling methods.

Calculations on nonlinear optical properties for large systems

Calculations on nonlinear optical properties for large systems PDF Author: Feng Long Gu
Publisher: Springer
ISBN: 3319110683
Category : Science
Languages : en
Pages : 106

Get Book Here

Book Description
For design purposes one needs to relate the structure of proposed materials to their NLO (nonlinear optical) and other properties, which is a situation where theoretical approaches can be very helpful in providing suggestions for candidate systems that subsequently can be synthesized and studied experimentally. This brief describes the quantum-mechanical treatment of the response to one or more external oscillating electric fields for molecular and macroscopic, crystalline systems. To calculate NLO properties of large systems, a linear scaling generalized elongation method for the efficient and accurate calculation is introduced. The reader should be aware that this treatment is particularly feasible for complicated three-dimensional and/or delocalized systems that are intractable when applied to conventional or other linear scaling methods.

Contemporary Nonlinear Optics

Contemporary Nonlinear Optics PDF Author: Robert Boyd
Publisher: Academic Press
ISBN: 0323148204
Category : Science
Languages : en
Pages : 494

Get Book Here

Book Description
Contemporary Nonlinear Optics discusses the different activities in the field of nonlinear optics. The book is comprised of 10 chapters. Chapter 1 presents a description of the field of nonlinear guided-wave optics. Chapter 2 surveys a new branch of nonlinear optics under the heading optical solitons. Chapter 3 reviews recent progress in the field of optical phase conjugation. Chapter 4 discusses ultrafast nonlinear optics, a field that is growing rapidly with the ability of generating and controlling femtosecond optical pulses. Chapter 5 examines a branch of nonlinear optics that may be termed nonlinear quantum optics. Chapter 6 reviews the new field of photorefractive adaptive neural networks. Chapter 7 presents a discussion of recent successes in the development of nonlinear optical media based on organic materials. Chapter 8 reviews the field of nonlinear optics in quantum confined structures. Chapter 9 reviews the field of nonlinear laser spectroscopy, with emphasis on advances made during the 1980s. Finally, Chapter 10 reviews the field of nonlinear optical dynamics by considering nonlinear optical systems that exhibit temporal, spatial, or spatio-temporal instabilities. This book is a valuable source for physicists and other scientists interested in optical systems and neural networks.

Computing the Optical Properties of Large Systems

Computing the Optical Properties of Large Systems PDF Author: Tim Joachim Zuehlsdorff
Publisher: Springer
ISBN: 3319197703
Category : Science
Languages : en
Pages : 196

Get Book Here

Book Description
This work addresses the computation of excited-state properties of systems containing thousands of atoms. To achieve this, the author combines the linear response formulation of time-dependent density functional theory (TDDFT) with linear-scaling techniques known from ground-state density-functional theory. This extends the range of TDDFT, which on its own cannot tackle many of the large and interesting systems in materials science and computational biology. The strengths of the approach developed in this work are demonstrated on a number of problems involving large-scale systems, including exciton coupling in the Fenna-Matthews-Olson complex and the investigation of low-lying excitations in doped p-terphenyl organic crystals.

Nonlinear Optical Effects in Organic Polymers

Nonlinear Optical Effects in Organic Polymers PDF Author: J. Messier
Publisher: Springer Science & Business Media
ISBN: 9400922957
Category : Science
Languages : en
Pages : 393

Get Book Here

Book Description
Photonics, the counterpart of electronics, involves the usage of Photons instead of electrons to process information and perform various switching operations. Photonics is projected to be the technology of the future because of the gain in speed, processing and interconnectivity of network. Nonlinear optical processes will play the key role in photonics Where they can be used for frequency conversion, optical switching and modulation. Organic molecules and polymers have emerged as a new class of highly promising nonlinear optical materials Which has captured the attention of scientists world wide. The organic systems offer the advantage of large nonresonant nonlinearities derived from the 1T electrons contribution, femtosecond response time and the flexibility to modify their molecular structures. In addition, organic polymers can easily be fabricated in various device structures compatible with the fiber-optics communication system. The area of nonlinear optics of organic molecules and polymers offers exciting opportunities for both fundamental research and technologic development. It is truly an interdisciplinary area. This proceeding is the outcome of the first NATO Advanced Research WOrkshop in this highly important area. The objective of the workshop was to provide a forum for scientists of varying background from both universities and industries to come together and interface their expertize. The scope of the workshop was multidisciplinary with active participations from Chemists, physicists, engineers and materials scientists from many countries.

Nonlinear Optical Properties of Absorbing Molecular Systems

Nonlinear Optical Properties of Absorbing Molecular Systems PDF Author: John Michael Robertson
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Non-Linear Optical Properties of Matter

Non-Linear Optical Properties of Matter PDF Author: Manthos G. Papadopoulos
Publisher: Springer Science & Business Media
ISBN: 1402048505
Category : Science
Languages : en
Pages : 676

Get Book Here

Book Description
This book assembles both theory and application in this field, to interest experimentalists and theoreticians alike. Part 1 is concerned with the theory and computing of non-linear optical (NLO) properties while Part 2 reviews the latest developments in experimentation. This book will be invaluable to researchers and students in academia and industry, particularlrly to anyone involved in materials science, theoretical and computational chemistry, chemical physics, and molecular physics.

Computational Methods for Large Systems

Computational Methods for Large Systems PDF Author: Jeffrey R. Reimers
Publisher: John Wiley & Sons
ISBN: 0470934727
Category : Science
Languages : en
Pages : 568

Get Book Here

Book Description
While its results normally complement the information obtained by chemical experiments, computer computations can in some cases predict unobserved chemical phenomena Electronic-Structure Computational Methods for Large Systems gives readers a simple description of modern electronic-structure techniques. It shows what techniques are pertinent for particular problems in biotechnology and nanotechnology and provides a balanced treatment of topics that teach strengths and weaknesses, appropriate and inappropriate methods. It’s a book that will enhance the your calculating confidence and improve your ability to predict new effects and solve new problems.

Optical and Transport Properties of Organic Molecules

Optical and Transport Properties of Organic Molecules PDF Author: David Alan Strubbe
Publisher:
ISBN:
Category :
Languages : en
Pages : 438

Get Book Here

Book Description
Organic molecules are versatile and tunable building blocks for technology, in nanoscale and bulk devices. In this dissertation, I will consider some important applications for organic molecules involving optical and transport properties, and develop methods and software appropriate for theoretical calculations of these properties. Specifically, we will consider second-harmonic generation, a nonlinear optical process; photoisomerization, in which absorption of light leads to mechanical motion; charge transport in junctions formed of single molecules; and optical excitations in pentacene, an organic semiconductor with applications in photovoltaics, optoelectronics, and flexible electronics. In the Introduction (Chapter 1), I will give an overview of some phenomenology about organic molecules and these application areas, and discuss the basics of the theoretical methodology I will use: density-functional theory (DFT), time-dependent density-functional theory (TDDFT), and many-body perturbation theory based on the GW approximation. In the subsequent chapters, I will further discuss, develop, and apply this methodology. 2. I will give a pedagogical derivation of the methods for calculating response properties in TDDFT, with particular focus on the Sternheimer equation, as will be used in subsequent chapters. I will review the many different response properties that can be calculated (dynamic and static) and the appropriate perturbations used to calculate them. 3. Standard techniques for calculating response use either integer occupations (as appropriate for a system with an energy gap) or fractional occupations due to a smearing function, used to improve convergence for metallic systems. I will present a generalization which can be used to compute response for a system with arbitrary fractional occupations. 4. Chloroform (CHCl3) is a small molecule commonly used as a solvent in measurements of nonlinear optics. I computed its hyperpolarizability for second-harmonic generation with TDDFT with a real-space grid, finding good agreement with calculations using localized bases and with experimental measurements, and that the response is very long-ranged in space. 5. N@C60 is an endohedral fullerene, a sphere of carbon containing a single N atom inside, which is weakly coupled electronically. I show with TDDFT calculations that a laser pulse can excite the vibrational mode of this N atom, transiently turning on and off the system's ability to undergo second-harmonic generation. The calculated susceptibility is as large as some commercially used frequency-doubling materials. 6. A crucial question in understanding experimental measurements of nonlinear optics and their relation to device performance is the effect of the solution environment on the properties of the isolated molecules. I will consider possible explanations for the large enhancement of the hyperpolarizability of chloroform in solution, demonstrate an ab initio method of calculating electrostatic effects with local-field factors, and derive the equations necessary for a full calculation of liquid chloroform. 7. Many-body perturbation theory, in the GW approximation for quasiparticle bandstructure and Bethe-Salpeter equation for optical properties, is a powerful method for calculations in solids, nanostructures, and molecules. The BerkeleyGW code is a freely available implementation of this methodology which has been extensively tested and efficiently parallelized for use on large systems. 8. Molecular junctions, in which a single molecule is contacted to two metallic leads, are interesting systems for studying nanoscale transport. I will present a method called DFT+Sigma which approximates many-body perturbation theory to enable accurate and efficient calculations of the conductance of these systems. 9. Azobenzene is a molecule with the unusual property that it can switch reversible between two different geometries, cis and trans, upon absorption of light. I have calculated the structures of these two forms when absorbed on the Au(111) surface, to understand scanning tunneling microscope studies and elucidate the switching mechanism on the surface. I have also calculated the conductance of the two forms in a molecular junction. 10. The Seebeck and Peltier thermoelectric effects can interconvert electricity and heat, and are parametrized by the Seebeck coefficient. Standard methods in quantum transport for computing this quantity are problematic numerically. I will show this fact in a simple model and derive a more robust and efficient approach. 11. Pentacene is an organic semiconductor which shows exciton self-trapping in its optical spectra. I will present a method for calculation of excited-state forces with the Bethe-Salpeter equation that can be applied to study the geometrical relaxation that occurs upon absorption of light by pentacene.

Nonlinear Optics

Nonlinear Optics PDF Author: Partha P. Banerjee
Publisher: CRC Press
ISBN: 0203025830
Category : Technology & Engineering
Languages : en
Pages : 314

Get Book Here

Book Description
Nonlinear Optics probes in great depth quadratic and cubic nonlinearities, photorefractive nonlinear optics, the nonlinear optical properties of nematic liquid crystals, and photonic bandgap structures. This reference places core physical principles and theoretical concepts in dialogue with contemporary applications and research and presents

Linear and Nonlinear Optical Spectroscopy and Microscopy

Linear and Nonlinear Optical Spectroscopy and Microscopy PDF Author: Mengtao Sun
Publisher: Springer Nature
ISBN: 9819936373
Category :
Languages : en
Pages : 125

Get Book Here

Book Description