Author: N.S. Narasimha Sastry
Publisher: Springer Science & Business Media
ISBN: 1461407095
Category : Mathematics
Languages : en
Pages : 348
Book Description
This is the Proceedings of the ICM 2010 Satellite Conference on “Buildings, Finite Geometries and Groups” organized at the Indian Statistical Institute, Bangalore, during August 29 – 31, 2010. This is a collection of articles by some of the currently very active research workers in several areas related to finite simple groups, Chevalley groups and their generalizations: theory of buildings, finite incidence geometries, modular representations, Lie theory, etc. These articles reflect the current major trends in research in the geometric and combinatorial aspects of the study of these groups. The unique perspective the authors bring in their articles on the current developments and the major problems in their area is expected to be very useful to research mathematicians, graduate students and potential new entrants to these areas.
Buildings, Finite Geometries and Groups
Author: N.S. Narasimha Sastry
Publisher: Springer Science & Business Media
ISBN: 1461407095
Category : Mathematics
Languages : en
Pages : 348
Book Description
This is the Proceedings of the ICM 2010 Satellite Conference on “Buildings, Finite Geometries and Groups” organized at the Indian Statistical Institute, Bangalore, during August 29 – 31, 2010. This is a collection of articles by some of the currently very active research workers in several areas related to finite simple groups, Chevalley groups and their generalizations: theory of buildings, finite incidence geometries, modular representations, Lie theory, etc. These articles reflect the current major trends in research in the geometric and combinatorial aspects of the study of these groups. The unique perspective the authors bring in their articles on the current developments and the major problems in their area is expected to be very useful to research mathematicians, graduate students and potential new entrants to these areas.
Publisher: Springer Science & Business Media
ISBN: 1461407095
Category : Mathematics
Languages : en
Pages : 348
Book Description
This is the Proceedings of the ICM 2010 Satellite Conference on “Buildings, Finite Geometries and Groups” organized at the Indian Statistical Institute, Bangalore, during August 29 – 31, 2010. This is a collection of articles by some of the currently very active research workers in several areas related to finite simple groups, Chevalley groups and their generalizations: theory of buildings, finite incidence geometries, modular representations, Lie theory, etc. These articles reflect the current major trends in research in the geometric and combinatorial aspects of the study of these groups. The unique perspective the authors bring in their articles on the current developments and the major problems in their area is expected to be very useful to research mathematicians, graduate students and potential new entrants to these areas.
Geometries and Groups
Author: M. Aschbacher
Publisher: Springer Science & Business Media
ISBN: 9400940173
Category : Mathematics
Languages : en
Pages : 533
Book Description
The workshop was set up in order to stimulate the interaction between (finite and algebraic) geometries and groups. Five areas of concentrated research were chosen on which attention would be focused, namely: diagram geometries and chamber systems with transitive automorphism groups, geometries viewed as incidence systems, properties of finite groups of Lie type, geometries related to finite simple groups, and algebraic groups. The list of talks (cf. page iii) illustrates how these subjects were represented during the workshop. The contributions to these proceedings mainly belong to the first three areas; therefore, (i) diagram geometries and chamber systems with transitive automorphism groups, (ii) geometries viewed as incidence systems, and (iii) properties of finite groups of Lie type occur as section titles. The fourth and final section of these proceedings has been named graphs and groups; besides some graph theory, this encapsules most of the work related to finite simple groups that does not (explicitly) deal with diagram geometry. A few more words about the content: (i). Diagram geometries and chamber systems with transitive automorphism groups. As a consequence of Tits' seminal work on the subject, all finite buildings are known. But usually, in a situation where groups are to be characterized by certain data concerning subgroups, a lot less is known than the full parabolic picture corresponding to the building.
Publisher: Springer Science & Business Media
ISBN: 9400940173
Category : Mathematics
Languages : en
Pages : 533
Book Description
The workshop was set up in order to stimulate the interaction between (finite and algebraic) geometries and groups. Five areas of concentrated research were chosen on which attention would be focused, namely: diagram geometries and chamber systems with transitive automorphism groups, geometries viewed as incidence systems, properties of finite groups of Lie type, geometries related to finite simple groups, and algebraic groups. The list of talks (cf. page iii) illustrates how these subjects were represented during the workshop. The contributions to these proceedings mainly belong to the first three areas; therefore, (i) diagram geometries and chamber systems with transitive automorphism groups, (ii) geometries viewed as incidence systems, and (iii) properties of finite groups of Lie type occur as section titles. The fourth and final section of these proceedings has been named graphs and groups; besides some graph theory, this encapsules most of the work related to finite simple groups that does not (explicitly) deal with diagram geometry. A few more words about the content: (i). Diagram geometries and chamber systems with transitive automorphism groups. As a consequence of Tits' seminal work on the subject, all finite buildings are known. But usually, in a situation where groups are to be characterized by certain data concerning subgroups, a lot less is known than the full parabolic picture corresponding to the building.
Finite Structures with Few Types
Author: Gregory L. Cherlin
Publisher: Princeton University Press
ISBN: 9780691113319
Category : Mathematics
Languages : en
Pages : 204
Book Description
This book applies model theoretic methods to the study of certain finite permutation groups, the automorphism groups of structures for a fixed finite language with a bounded number of orbits on 4-tuples. Primitive permutation groups of this type have been classified by Kantor, Liebeck, and Macpherson, using the classification of the finite simple groups. Building on this work, Gregory Cherlin and Ehud Hrushovski here treat the general case by developing analogs of the model theoretic methods of geometric stability theory. The work lies at the juncture of permutation group theory, model theory, classical geometries, and combinatorics. The principal results are finite theorems, an associated analysis of computational issues, and an "intrinsic" characterization of the permutation groups (or finite structures) under consideration. The main finiteness theorem shows that the structures under consideration fall naturally into finitely many families, with each family parametrized by finitely many numerical invariants (dimensions of associated coordinating geometries). The authors provide a case study in the extension of methods of stable model theory to a nonstable context, related to work on Shelah's "simple theories." They also generalize Lachlan's results on stable homogeneous structures for finite relational languages, solving problems of effectivity left open by that case. Their methods involve the analysis of groups interpretable in these structures, an analog of Zilber's envelopes, and the combinatorics of the underlying geometries. Taking geometric stability theory into new territory, this book is for mathematicians interested in model theory and group theory.
Publisher: Princeton University Press
ISBN: 9780691113319
Category : Mathematics
Languages : en
Pages : 204
Book Description
This book applies model theoretic methods to the study of certain finite permutation groups, the automorphism groups of structures for a fixed finite language with a bounded number of orbits on 4-tuples. Primitive permutation groups of this type have been classified by Kantor, Liebeck, and Macpherson, using the classification of the finite simple groups. Building on this work, Gregory Cherlin and Ehud Hrushovski here treat the general case by developing analogs of the model theoretic methods of geometric stability theory. The work lies at the juncture of permutation group theory, model theory, classical geometries, and combinatorics. The principal results are finite theorems, an associated analysis of computational issues, and an "intrinsic" characterization of the permutation groups (or finite structures) under consideration. The main finiteness theorem shows that the structures under consideration fall naturally into finitely many families, with each family parametrized by finitely many numerical invariants (dimensions of associated coordinating geometries). The authors provide a case study in the extension of methods of stable model theory to a nonstable context, related to work on Shelah's "simple theories." They also generalize Lachlan's results on stable homogeneous structures for finite relational languages, solving problems of effectivity left open by that case. Their methods involve the analysis of groups interpretable in these structures, an analog of Zilber's envelopes, and the combinatorics of the underlying geometries. Taking geometric stability theory into new territory, this book is for mathematicians interested in model theory and group theory.
Structure and Geometry of Lie Groups
Author: Joachim Hilgert
Publisher: Springer Science & Business Media
ISBN: 0387847944
Category : Mathematics
Languages : en
Pages : 742
Book Description
This self-contained text is an excellent introduction to Lie groups and their actions on manifolds. The authors start with an elementary discussion of matrix groups, followed by chapters devoted to the basic structure and representation theory of finite dimensinal Lie algebras. They then turn to global issues, demonstrating the key issue of the interplay between differential geometry and Lie theory. Special emphasis is placed on homogeneous spaces and invariant geometric structures. The last section of the book is dedicated to the structure theory of Lie groups. Particularly, they focus on maximal compact subgroups, dense subgroups, complex structures, and linearity. This text is accessible to a broad range of mathematicians and graduate students; it will be useful both as a graduate textbook and as a research reference.
Publisher: Springer Science & Business Media
ISBN: 0387847944
Category : Mathematics
Languages : en
Pages : 742
Book Description
This self-contained text is an excellent introduction to Lie groups and their actions on manifolds. The authors start with an elementary discussion of matrix groups, followed by chapters devoted to the basic structure and representation theory of finite dimensinal Lie algebras. They then turn to global issues, demonstrating the key issue of the interplay between differential geometry and Lie theory. Special emphasis is placed on homogeneous spaces and invariant geometric structures. The last section of the book is dedicated to the structure theory of Lie groups. Particularly, they focus on maximal compact subgroups, dense subgroups, complex structures, and linearity. This text is accessible to a broad range of mathematicians and graduate students; it will be useful both as a graduate textbook and as a research reference.
Finite Geometries
Author: Catherine Anne Baker
Publisher: CRC Press
ISBN: 1000146685
Category : Mathematics
Languages : en
Pages : 399
Book Description
This book is a compilation of the papers presented at the conference in Winnipeg on the subject of finite geometry in 1984. It covers different fields in finite geometry: classical finite geometry, the geometry of finite planes, geometric structures and the theory of translation planes.
Publisher: CRC Press
ISBN: 1000146685
Category : Mathematics
Languages : en
Pages : 399
Book Description
This book is a compilation of the papers presented at the conference in Winnipeg on the subject of finite geometry in 1984. It covers different fields in finite geometry: classical finite geometry, the geometry of finite planes, geometric structures and the theory of translation planes.
Geometry of Lie Groups
Author: B. Rosenfeld
Publisher: Springer Science & Business Media
ISBN: 9780792343905
Category : Mathematics
Languages : en
Pages : 424
Book Description
This book is the result of many years of research in Non-Euclidean Geometries and Geometry of Lie groups, as well as teaching at Moscow State University (1947- 1949), Azerbaijan State University (Baku) (1950-1955), Kolomna Pedagogical Col lege (1955-1970), Moscow Pedagogical University (1971-1990), and Pennsylvania State University (1990-1995). My first books on Non-Euclidean Geometries and Geometry of Lie groups were written in Russian and published in Moscow: Non-Euclidean Geometries (1955) [Ro1] , Multidimensional Spaces (1966) [Ro2] , and Non-Euclidean Spaces (1969) [Ro3]. In [Ro1] I considered non-Euclidean geometries in the broad sense, as geometry of simple Lie groups, since classical non-Euclidean geometries, hyperbolic and elliptic, are geometries of simple Lie groups of classes Bn and D , and geometries of complex n and quaternionic Hermitian elliptic and hyperbolic spaces are geometries of simple Lie groups of classes An and en. [Ro1] contains an exposition of the geometry of classical real non-Euclidean spaces and their interpretations as hyperspheres with identified antipodal points in Euclidean or pseudo-Euclidean spaces, and in projective and conformal spaces. Numerous interpretations of various spaces different from our usual space allow us, like stereoscopic vision, to see many traits of these spaces absent in the usual space.
Publisher: Springer Science & Business Media
ISBN: 9780792343905
Category : Mathematics
Languages : en
Pages : 424
Book Description
This book is the result of many years of research in Non-Euclidean Geometries and Geometry of Lie groups, as well as teaching at Moscow State University (1947- 1949), Azerbaijan State University (Baku) (1950-1955), Kolomna Pedagogical Col lege (1955-1970), Moscow Pedagogical University (1971-1990), and Pennsylvania State University (1990-1995). My first books on Non-Euclidean Geometries and Geometry of Lie groups were written in Russian and published in Moscow: Non-Euclidean Geometries (1955) [Ro1] , Multidimensional Spaces (1966) [Ro2] , and Non-Euclidean Spaces (1969) [Ro3]. In [Ro1] I considered non-Euclidean geometries in the broad sense, as geometry of simple Lie groups, since classical non-Euclidean geometries, hyperbolic and elliptic, are geometries of simple Lie groups of classes Bn and D , and geometries of complex n and quaternionic Hermitian elliptic and hyperbolic spaces are geometries of simple Lie groups of classes An and en. [Ro1] contains an exposition of the geometry of classical real non-Euclidean spaces and their interpretations as hyperspheres with identified antipodal points in Euclidean or pseudo-Euclidean spaces, and in projective and conformal spaces. Numerous interpretations of various spaces different from our usual space allow us, like stereoscopic vision, to see many traits of these spaces absent in the usual space.
Groups of Lie Type and Their Geometries
Author: William M. Kantor
Publisher: Cambridge University Press
ISBN: 052146790X
Category : Mathematics
Languages : en
Pages : 324
Book Description
Silk Hope, NC is a buoyant and moving parable in which two good women find, among the hidden, forgotten virtues of the past, a sustenance to carry them into the future.
Publisher: Cambridge University Press
ISBN: 052146790X
Category : Mathematics
Languages : en
Pages : 324
Book Description
Silk Hope, NC is a buoyant and moving parable in which two good women find, among the hidden, forgotten virtues of the past, a sustenance to carry them into the future.
Finite Geometries, Groups, and Computation
Author: Alexander Hulpke
Publisher: Walter de Gruyter
ISBN: 3110199742
Category : Mathematics
Languages : en
Pages : 287
Book Description
This volume is the proceedings of a conference on Finite Geometries, Groups, and Computation that took place on September 4-9, 2004, at Pingree Park, Colorado (a campus of Colorado State University). Not accidentally, the conference coincided with the 60th birthday of William Kantor, and the topics relate to his major research areas. Participants were encouraged to explore the deeper interplay between these fields. The survey papers by Kantor, O'Brien, and Penttila should serve to introduce both students and the broader mathematical community to these important topics and some of their connections while the volume as a whole gives an overview of current developments in these fields.
Publisher: Walter de Gruyter
ISBN: 3110199742
Category : Mathematics
Languages : en
Pages : 287
Book Description
This volume is the proceedings of a conference on Finite Geometries, Groups, and Computation that took place on September 4-9, 2004, at Pingree Park, Colorado (a campus of Colorado State University). Not accidentally, the conference coincided with the 60th birthday of William Kantor, and the topics relate to his major research areas. Participants were encouraged to explore the deeper interplay between these fields. The survey papers by Kantor, O'Brien, and Penttila should serve to introduce both students and the broader mathematical community to these important topics and some of their connections while the volume as a whole gives an overview of current developments in these fields.
Buildings and the Geometry of Diagrams
Author: Luigi A. Rosati
Publisher: Springer
ISBN: 3540398015
Category : Mathematics
Languages : en
Pages : 287
Book Description
Publisher: Springer
ISBN: 3540398015
Category : Mathematics
Languages : en
Pages : 287
Book Description
Abstract Regular Polytopes
Author: Peter McMullen
Publisher: Cambridge University Press
ISBN: 9780521814966
Category : Mathematics
Languages : en
Pages : 580
Book Description
Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. They are highly symmetric combinatorial structures with distinctive geometric, algebraic or topological properties; in many ways more fascinating than traditional regular polytopes and tessellations. The rapid development of the subject in the past 20 years has resulted in a rich new theory, featuring an attractive interplay of mathematical areas, including geometry, combinatorics, group theory and topology. Abstract regular polytopes and their groups provide an appealing new approach to understanding geometric and combinatorial symmetry. This is the first comprehensive up-to-date account of the subject and its ramifications, and meets a critical need for such a text, because no book has been published in this area of classical and modern discrete geometry since Coxeter's Regular Polytopes (1948) and Regular Complex Polytopes (1974). The book should be of interest to researchers and graduate students in discrete geometry, combinatorics and group theory.
Publisher: Cambridge University Press
ISBN: 9780521814966
Category : Mathematics
Languages : en
Pages : 580
Book Description
Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. They are highly symmetric combinatorial structures with distinctive geometric, algebraic or topological properties; in many ways more fascinating than traditional regular polytopes and tessellations. The rapid development of the subject in the past 20 years has resulted in a rich new theory, featuring an attractive interplay of mathematical areas, including geometry, combinatorics, group theory and topology. Abstract regular polytopes and their groups provide an appealing new approach to understanding geometric and combinatorial symmetry. This is the first comprehensive up-to-date account of the subject and its ramifications, and meets a critical need for such a text, because no book has been published in this area of classical and modern discrete geometry since Coxeter's Regular Polytopes (1948) and Regular Complex Polytopes (1974). The book should be of interest to researchers and graduate students in discrete geometry, combinatorics and group theory.