Author: Yattish Ramhorry
Publisher: BPB Publications
ISBN: 9355519133
Category : Computers
Languages : en
Pages : 333
Book Description
DESCRIPTION Building Intelligent Applications with Generative AI is a comprehensive guide that unlocks the power of generative AI for building cutting-edge applications. This book covers a wide range of use cases and practical examples, from text generation and conversational agents to creative media generation and code completion. These examples are designed to help you capitalize on the potential of generative AI in your applications. Through clear explanations, step-by-step tutorials, and real-world case studies, you will learn how to prepare data and train generative AI models. You will also explore different generative AI techniques, including large language models like GPT-4, ChatGPT, Llama 2, and Google’s Gemini, to understand how they can be applied in various domains, such as content generation, virtual assistants, and code generation. With a focus on practical implementation, this book also examines ethical considerations, best practices, and future trends in generative AI. Further, this book concludes by exploring ethical considerations and best practices for building responsible GAI applications, ensuring you are harnessing this technology for good. By the end of this book, you will be well-equipped to leverage the power of GAI to build intelligent applications and unleash your creativity in innovative ways. KEY FEATURES ● Learn the fundamentals of generative AI and the practical usage of prompt engineering. ● Gain hands-on experience in building generative AI applications. ● Learn to use tools like LangChain, LangSmith, and FlowiseAI to create intelligent applications and AI chatbots. WHAT YOU WILL LEARN ● Understand generative AI (GAI) and large language models (LLMs). ● Explore real-world GAI applications across industries. ● Build intelligent applications with the ChatGPT API. ● Explore retrieval augmented generation with LangChain and Gemini Pro. ● Create chatbots with LangChain and Streamlit for data retrieval. WHO THIS BOOK IS FOR This book is for developers, data scientists, AI practitioners, and tech enthusiasts who are interested in leveraging generative AI techniques to build intelligent applications across various domains. TABLE OF CONTENTS 1. Exploring the World of Generative AI 2. Use Cases for Generative AI Applications 3. Mastering the Art of Prompt Engineering 4. Integrating Generative AI Models into Applications 5. Emerging Trends and the Future of Generative AI 6. Building Intelligent Applications with the ChatGPT API 7. Retrieval Augmented Generation with Gemini Pro 8. Generative AI Applications with Gradio 9. Visualize your Data with LangChain and Streamlit 10. Building LLM Applications with Llama 2 11. Building an AI Document Chatbot with Flowise AI 12. Best Practices for Building Applications with Generative AI 13. Ethical Considerations of Generative AI
Building Intelligent Applications with Generative AI
Author: Yattish Ramhorry
Publisher: BPB Publications
ISBN: 9355519133
Category : Computers
Languages : en
Pages : 333
Book Description
DESCRIPTION Building Intelligent Applications with Generative AI is a comprehensive guide that unlocks the power of generative AI for building cutting-edge applications. This book covers a wide range of use cases and practical examples, from text generation and conversational agents to creative media generation and code completion. These examples are designed to help you capitalize on the potential of generative AI in your applications. Through clear explanations, step-by-step tutorials, and real-world case studies, you will learn how to prepare data and train generative AI models. You will also explore different generative AI techniques, including large language models like GPT-4, ChatGPT, Llama 2, and Google’s Gemini, to understand how they can be applied in various domains, such as content generation, virtual assistants, and code generation. With a focus on practical implementation, this book also examines ethical considerations, best practices, and future trends in generative AI. Further, this book concludes by exploring ethical considerations and best practices for building responsible GAI applications, ensuring you are harnessing this technology for good. By the end of this book, you will be well-equipped to leverage the power of GAI to build intelligent applications and unleash your creativity in innovative ways. KEY FEATURES ● Learn the fundamentals of generative AI and the practical usage of prompt engineering. ● Gain hands-on experience in building generative AI applications. ● Learn to use tools like LangChain, LangSmith, and FlowiseAI to create intelligent applications and AI chatbots. WHAT YOU WILL LEARN ● Understand generative AI (GAI) and large language models (LLMs). ● Explore real-world GAI applications across industries. ● Build intelligent applications with the ChatGPT API. ● Explore retrieval augmented generation with LangChain and Gemini Pro. ● Create chatbots with LangChain and Streamlit for data retrieval. WHO THIS BOOK IS FOR This book is for developers, data scientists, AI practitioners, and tech enthusiasts who are interested in leveraging generative AI techniques to build intelligent applications across various domains. TABLE OF CONTENTS 1. Exploring the World of Generative AI 2. Use Cases for Generative AI Applications 3. Mastering the Art of Prompt Engineering 4. Integrating Generative AI Models into Applications 5. Emerging Trends and the Future of Generative AI 6. Building Intelligent Applications with the ChatGPT API 7. Retrieval Augmented Generation with Gemini Pro 8. Generative AI Applications with Gradio 9. Visualize your Data with LangChain and Streamlit 10. Building LLM Applications with Llama 2 11. Building an AI Document Chatbot with Flowise AI 12. Best Practices for Building Applications with Generative AI 13. Ethical Considerations of Generative AI
Publisher: BPB Publications
ISBN: 9355519133
Category : Computers
Languages : en
Pages : 333
Book Description
DESCRIPTION Building Intelligent Applications with Generative AI is a comprehensive guide that unlocks the power of generative AI for building cutting-edge applications. This book covers a wide range of use cases and practical examples, from text generation and conversational agents to creative media generation and code completion. These examples are designed to help you capitalize on the potential of generative AI in your applications. Through clear explanations, step-by-step tutorials, and real-world case studies, you will learn how to prepare data and train generative AI models. You will also explore different generative AI techniques, including large language models like GPT-4, ChatGPT, Llama 2, and Google’s Gemini, to understand how they can be applied in various domains, such as content generation, virtual assistants, and code generation. With a focus on practical implementation, this book also examines ethical considerations, best practices, and future trends in generative AI. Further, this book concludes by exploring ethical considerations and best practices for building responsible GAI applications, ensuring you are harnessing this technology for good. By the end of this book, you will be well-equipped to leverage the power of GAI to build intelligent applications and unleash your creativity in innovative ways. KEY FEATURES ● Learn the fundamentals of generative AI and the practical usage of prompt engineering. ● Gain hands-on experience in building generative AI applications. ● Learn to use tools like LangChain, LangSmith, and FlowiseAI to create intelligent applications and AI chatbots. WHAT YOU WILL LEARN ● Understand generative AI (GAI) and large language models (LLMs). ● Explore real-world GAI applications across industries. ● Build intelligent applications with the ChatGPT API. ● Explore retrieval augmented generation with LangChain and Gemini Pro. ● Create chatbots with LangChain and Streamlit for data retrieval. WHO THIS BOOK IS FOR This book is for developers, data scientists, AI practitioners, and tech enthusiasts who are interested in leveraging generative AI techniques to build intelligent applications across various domains. TABLE OF CONTENTS 1. Exploring the World of Generative AI 2. Use Cases for Generative AI Applications 3. Mastering the Art of Prompt Engineering 4. Integrating Generative AI Models into Applications 5. Emerging Trends and the Future of Generative AI 6. Building Intelligent Applications with the ChatGPT API 7. Retrieval Augmented Generation with Gemini Pro 8. Generative AI Applications with Gradio 9. Visualize your Data with LangChain and Streamlit 10. Building LLM Applications with Llama 2 11. Building an AI Document Chatbot with Flowise AI 12. Best Practices for Building Applications with Generative AI 13. Ethical Considerations of Generative AI
Building Intelligent Apps with .NET and Azure AI Services
Author: Ashirwad Satapathi
Publisher: Springer Nature
ISBN:
Category :
Languages : en
Pages : 209
Book Description
Publisher: Springer Nature
ISBN:
Category :
Languages : en
Pages : 209
Book Description
Building AI Intensive Python Applications
Author: Rachelle Palmer
Publisher: Packt Publishing Ltd
ISBN: 1836207247
Category : Computers
Languages : en
Pages : 299
Book Description
Master retrieval-augmented generation architecture and fine-tune your AI stack, along with discovering real-world use cases and best practices to create powerful AI apps Key Features Get to grips with the fundamentals of LLMs, vector databases, and Python frameworks Implement effective retrieval-augmented generation strategies with MongoDB Atlas Optimize AI models for performance and accuracy with model compression and deployment optimization Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe era of generative AI is upon us, and this book serves as a roadmap to harness its full potential. With its help, you’ll learn the core components of the AI stack: large language models (LLMs), vector databases, and Python frameworks, and see how these technologies work together to create intelligent applications. The chapters will help you discover best practices for data preparation, model selection, and fine-tuning, and teach you advanced techniques such as retrieval-augmented generation (RAG) to overcome common challenges, such as hallucinations and data leakage. You’ll get a solid understanding of vector databases, implement effective vector search strategies, refine models for accuracy, and optimize performance to achieve impactful results. You’ll also identify and address AI failures to ensure your applications deliver reliable and valuable results. By evaluating and improving the output of LLMs, you’ll be able to enhance their performance and relevance. By the end of this book, you’ll be well-equipped to build sophisticated AI applications that deliver real-world value.What you will learn Understand the architecture and components of the generative AI stack Explore the role of vector databases in enhancing AI applications Master Python frameworks for AI development Implement Vector Search in AI applications Find out how to effectively evaluate LLM output Overcome common failures and challenges in AI development Who this book is for This book is for software engineers and developers looking to build intelligent applications using generative AI. While the book is suitable for beginners, a basic understanding of Python programming is required to make the most of it.
Publisher: Packt Publishing Ltd
ISBN: 1836207247
Category : Computers
Languages : en
Pages : 299
Book Description
Master retrieval-augmented generation architecture and fine-tune your AI stack, along with discovering real-world use cases and best practices to create powerful AI apps Key Features Get to grips with the fundamentals of LLMs, vector databases, and Python frameworks Implement effective retrieval-augmented generation strategies with MongoDB Atlas Optimize AI models for performance and accuracy with model compression and deployment optimization Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe era of generative AI is upon us, and this book serves as a roadmap to harness its full potential. With its help, you’ll learn the core components of the AI stack: large language models (LLMs), vector databases, and Python frameworks, and see how these technologies work together to create intelligent applications. The chapters will help you discover best practices for data preparation, model selection, and fine-tuning, and teach you advanced techniques such as retrieval-augmented generation (RAG) to overcome common challenges, such as hallucinations and data leakage. You’ll get a solid understanding of vector databases, implement effective vector search strategies, refine models for accuracy, and optimize performance to achieve impactful results. You’ll also identify and address AI failures to ensure your applications deliver reliable and valuable results. By evaluating and improving the output of LLMs, you’ll be able to enhance their performance and relevance. By the end of this book, you’ll be well-equipped to build sophisticated AI applications that deliver real-world value.What you will learn Understand the architecture and components of the generative AI stack Explore the role of vector databases in enhancing AI applications Master Python frameworks for AI development Implement Vector Search in AI applications Find out how to effectively evaluate LLM output Overcome common failures and challenges in AI development Who this book is for This book is for software engineers and developers looking to build intelligent applications using generative AI. While the book is suitable for beginners, a basic understanding of Python programming is required to make the most of it.
Artificial Intelligence with Python
Author: Prateek Joshi
Publisher: Packt Publishing Ltd
ISBN: 1786469677
Category : Computers
Languages : en
Pages : 437
Book Description
Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.
Publisher: Packt Publishing Ltd
ISBN: 1786469677
Category : Computers
Languages : en
Pages : 437
Book Description
Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.
Unlocking Data with Generative AI and RAG
Author: Keith Bourne
Publisher: Packt Publishing Ltd
ISBN: 1835887910
Category : Computers
Languages : en
Pages : 346
Book Description
Leverage cutting-edge generative AI techniques such as RAG to realize the potential of your data and drive innovation as well as gain strategic advantage Key Features Optimize data retrieval and generation using vector databases Boost decision-making and automate workflows with AI agents Overcome common challenges in implementing real-world RAG systems Purchase of the print or Kindle book includes a free PDF eBook Book Description Generative AI is helping organizations tap into their data in new ways, with retrieval-augmented generation (RAG) combining the strengths of large language models (LLMs) with internal data for more intelligent and relevant AI applications. The author harnesses his decade of ML experience in this book to equip you with the strategic insights and technical expertise needed when using RAG to drive transformative outcomes. The book explores RAG’s role in enhancing organizational operations by blending theoretical foundations with practical techniques. You’ll work with detailed coding examples using tools such as LangChain and Chroma’s vector database to gain hands-on experience in integrating RAG into AI systems. The chapters contain real-world case studies and sample applications that highlight RAG’s diverse use cases, from search engines to chatbots. You’ll learn proven methods for managing vector databases, optimizing data retrieval, effective prompt engineering, and quantitatively evaluating performance. The book also takes you through advanced integrations of RAG with cutting-edge AI agents and emerging non-LLM technologies. By the end of this book, you’ll be able to successfully deploy RAG in business settings, address common challenges, and push the boundaries of what’s possible with this revolutionary AI technique. What you will learn Understand RAG principles and their significance in generative AI Integrate LLMs with internal data for enhanced operations Master vectorization, vector databases, and vector search techniques Develop skills in prompt engineering specific to RAG and design for precise AI responses Familiarize yourself with AI agents' roles in facilitating sophisticated RAG applications Overcome scalability, data quality, and integration issues Discover strategies for optimizing data retrieval and AI interpretability Who this book is for This book is for AI researchers, data scientists, software developers, and business analysts looking to leverage RAG and generative AI to enhance data retrieval, improve AI accuracy, and drive innovation. It is particularly suited for anyone with a foundational understanding of AI who seeks practical, hands-on learning. The book offers real-world coding examples and strategies for implementing RAG effectively, making it accessible to both technical and non-technical audiences. A basic understanding of Python and Jupyter Notebooks is required.
Publisher: Packt Publishing Ltd
ISBN: 1835887910
Category : Computers
Languages : en
Pages : 346
Book Description
Leverage cutting-edge generative AI techniques such as RAG to realize the potential of your data and drive innovation as well as gain strategic advantage Key Features Optimize data retrieval and generation using vector databases Boost decision-making and automate workflows with AI agents Overcome common challenges in implementing real-world RAG systems Purchase of the print or Kindle book includes a free PDF eBook Book Description Generative AI is helping organizations tap into their data in new ways, with retrieval-augmented generation (RAG) combining the strengths of large language models (LLMs) with internal data for more intelligent and relevant AI applications. The author harnesses his decade of ML experience in this book to equip you with the strategic insights and technical expertise needed when using RAG to drive transformative outcomes. The book explores RAG’s role in enhancing organizational operations by blending theoretical foundations with practical techniques. You’ll work with detailed coding examples using tools such as LangChain and Chroma’s vector database to gain hands-on experience in integrating RAG into AI systems. The chapters contain real-world case studies and sample applications that highlight RAG’s diverse use cases, from search engines to chatbots. You’ll learn proven methods for managing vector databases, optimizing data retrieval, effective prompt engineering, and quantitatively evaluating performance. The book also takes you through advanced integrations of RAG with cutting-edge AI agents and emerging non-LLM technologies. By the end of this book, you’ll be able to successfully deploy RAG in business settings, address common challenges, and push the boundaries of what’s possible with this revolutionary AI technique. What you will learn Understand RAG principles and their significance in generative AI Integrate LLMs with internal data for enhanced operations Master vectorization, vector databases, and vector search techniques Develop skills in prompt engineering specific to RAG and design for precise AI responses Familiarize yourself with AI agents' roles in facilitating sophisticated RAG applications Overcome scalability, data quality, and integration issues Discover strategies for optimizing data retrieval and AI interpretability Who this book is for This book is for AI researchers, data scientists, software developers, and business analysts looking to leverage RAG and generative AI to enhance data retrieval, improve AI accuracy, and drive innovation. It is particularly suited for anyone with a foundational understanding of AI who seeks practical, hands-on learning. The book offers real-world coding examples and strategies for implementing RAG effectively, making it accessible to both technical and non-technical audiences. A basic understanding of Python and Jupyter Notebooks is required.
Scary Smart
Author: Mo Gawdat
Publisher: Bluebird
ISBN: 9781529077650
Category : Business & Economics
Languages : en
Pages : 0
Book Description
A Sunday Times Business Book of the Year. Scary Smart will teach you how to navigate the scary and inevitable intrusion of Artificial Intelligence, with an accessible blueprint for creating a harmonious future alongside AI. From Mo Gawdat, the former Chief Business Officer at Google [X] and bestselling author of Solve for Happy. Technology is putting our humanity at risk to an unprecedented degree. This book is not for engineers who write the code or the policy makers who claim they can regulate it. This is a book for you. Because, believe it or not, you are the only one that can fix it. - Mo Gawdat Artificial intelligence is smarter than humans. It can process information at lightning speed and remain focused on specific tasks without distraction. AI can see into the future, predict outcomes and even use sensors to see around physical and virtual corners. So why does AI frequently get it so wrong and cause harm? The answer is us: the human beings who write the code and teach AI to mimic our behaviour. Scary Smart explains how to fix the current trajectory now, to make sure that the AI of the future can preserve our species. This book offers a blueprint, pointing the way to what we can do to safeguard ourselves, those we love, and the planet itself. 'No one ever regrets reading anything Mo Gawdat has written.' - Emma Gannon, author of The Multi-Hyphen Method and host of the podcast Ctrl Alt Delete
Publisher: Bluebird
ISBN: 9781529077650
Category : Business & Economics
Languages : en
Pages : 0
Book Description
A Sunday Times Business Book of the Year. Scary Smart will teach you how to navigate the scary and inevitable intrusion of Artificial Intelligence, with an accessible blueprint for creating a harmonious future alongside AI. From Mo Gawdat, the former Chief Business Officer at Google [X] and bestselling author of Solve for Happy. Technology is putting our humanity at risk to an unprecedented degree. This book is not for engineers who write the code or the policy makers who claim they can regulate it. This is a book for you. Because, believe it or not, you are the only one that can fix it. - Mo Gawdat Artificial intelligence is smarter than humans. It can process information at lightning speed and remain focused on specific tasks without distraction. AI can see into the future, predict outcomes and even use sensors to see around physical and virtual corners. So why does AI frequently get it so wrong and cause harm? The answer is us: the human beings who write the code and teach AI to mimic our behaviour. Scary Smart explains how to fix the current trajectory now, to make sure that the AI of the future can preserve our species. This book offers a blueprint, pointing the way to what we can do to safeguard ourselves, those we love, and the planet itself. 'No one ever regrets reading anything Mo Gawdat has written.' - Emma Gannon, author of The Multi-Hyphen Method and host of the podcast Ctrl Alt Delete
Artificial Intelligence with Python
Author: Alberto Artasanchez
Publisher: Packt Publishing Ltd
ISBN: 1839216077
Category : Computers
Languages : en
Pages : 619
Book Description
New edition of the bestselling guide to artificial intelligence with Python, updated to Python 3.x, with seven new chapters that cover RNNs, AI and Big Data, fundamental use cases, chatbots, and more. Key FeaturesCompletely updated and revised to Python 3.xNew chapters for AI on the cloud, recurrent neural networks, deep learning models, and feature selection and engineeringLearn more about deep learning algorithms, machine learning data pipelines, and chatbotsBook Description Artificial Intelligence with Python, Second Edition is an updated and expanded version of the bestselling guide to artificial intelligence using the latest version of Python 3.x. Not only does it provide you an introduction to artificial intelligence, this new edition goes further by giving you the tools you need to explore the amazing world of intelligent apps and create your own applications. This edition also includes seven new chapters on more advanced concepts of Artificial Intelligence, including fundamental use cases of AI; machine learning data pipelines; feature selection and feature engineering; AI on the cloud; the basics of chatbots; RNNs and DL models; and AI and Big Data. Finally, this new edition explores various real-world scenarios and teaches you how to apply relevant AI algorithms to a wide swath of problems, starting with the most basic AI concepts and progressively building from there to solve more difficult challenges so that by the end, you will have gained a solid understanding of, and when best to use, these many artificial intelligence techniques. What you will learnUnderstand what artificial intelligence, machine learning, and data science areExplore the most common artificial intelligence use casesLearn how to build a machine learning pipelineAssimilate the basics of feature selection and feature engineeringIdentify the differences between supervised and unsupervised learningDiscover the most recent advances and tools offered for AI development in the cloudDevelop automatic speech recognition systems and chatbotsApply AI algorithms to time series dataWho this book is for The intended audience for this book is Python developers who want to build real-world Artificial Intelligence applications. Basic Python programming experience and awareness of machine learning concepts and techniques is mandatory.
Publisher: Packt Publishing Ltd
ISBN: 1839216077
Category : Computers
Languages : en
Pages : 619
Book Description
New edition of the bestselling guide to artificial intelligence with Python, updated to Python 3.x, with seven new chapters that cover RNNs, AI and Big Data, fundamental use cases, chatbots, and more. Key FeaturesCompletely updated and revised to Python 3.xNew chapters for AI on the cloud, recurrent neural networks, deep learning models, and feature selection and engineeringLearn more about deep learning algorithms, machine learning data pipelines, and chatbotsBook Description Artificial Intelligence with Python, Second Edition is an updated and expanded version of the bestselling guide to artificial intelligence using the latest version of Python 3.x. Not only does it provide you an introduction to artificial intelligence, this new edition goes further by giving you the tools you need to explore the amazing world of intelligent apps and create your own applications. This edition also includes seven new chapters on more advanced concepts of Artificial Intelligence, including fundamental use cases of AI; machine learning data pipelines; feature selection and feature engineering; AI on the cloud; the basics of chatbots; RNNs and DL models; and AI and Big Data. Finally, this new edition explores various real-world scenarios and teaches you how to apply relevant AI algorithms to a wide swath of problems, starting with the most basic AI concepts and progressively building from there to solve more difficult challenges so that by the end, you will have gained a solid understanding of, and when best to use, these many artificial intelligence techniques. What you will learnUnderstand what artificial intelligence, machine learning, and data science areExplore the most common artificial intelligence use casesLearn how to build a machine learning pipelineAssimilate the basics of feature selection and feature engineeringIdentify the differences between supervised and unsupervised learningDiscover the most recent advances and tools offered for AI development in the cloudDevelop automatic speech recognition systems and chatbotsApply AI algorithms to time series dataWho this book is for The intended audience for this book is Python developers who want to build real-world Artificial Intelligence applications. Basic Python programming experience and awareness of machine learning concepts and techniques is mandatory.
Architects of Intelligence
Author: Martin Ford
Publisher: Packt Publishing Ltd
ISBN: 178913126X
Category : Computers
Languages : en
Pages : 540
Book Description
Financial Times Best Books of the Year 2018 TechRepublic Top Books Every Techie Should Read Book Description How will AI evolve and what major innovations are on the horizon? What will its impact be on the job market, economy, and society? What is the path toward human-level machine intelligence? What should we be concerned about as artificial intelligence advances? Architects of Intelligence contains a series of in-depth, one-to-one interviews where New York Times bestselling author, Martin Ford, uncovers the truth behind these questions from some of the brightest minds in the Artificial Intelligence community. Martin has wide-ranging conversations with twenty-three of the world's foremost researchers and entrepreneurs working in AI and robotics: Demis Hassabis (DeepMind), Ray Kurzweil (Google), Geoffrey Hinton (Univ. of Toronto and Google), Rodney Brooks (Rethink Robotics), Yann LeCun (Facebook) , Fei-Fei Li (Stanford and Google), Yoshua Bengio (Univ. of Montreal), Andrew Ng (AI Fund), Daphne Koller (Stanford), Stuart Russell (UC Berkeley), Nick Bostrom (Univ. of Oxford), Barbara Grosz (Harvard), David Ferrucci (Elemental Cognition), James Manyika (McKinsey), Judea Pearl (UCLA), Josh Tenenbaum (MIT), Rana el Kaliouby (Affectiva), Daniela Rus (MIT), Jeff Dean (Google), Cynthia Breazeal (MIT), Oren Etzioni (Allen Institute for AI), Gary Marcus (NYU), and Bryan Johnson (Kernel). Martin Ford is a prominent futurist, and author of Financial Times Business Book of the Year, Rise of the Robots. He speaks at conferences and companies around the world on what AI and automation might mean for the future. Meet the minds behind the AI superpowers as they discuss the science, business and ethics of modern artificial intelligence. Read James Manyika’s thoughts on AI analytics, Geoffrey Hinton’s breakthroughs in AI programming and development, and Rana el Kaliouby’s insights into AI marketing. This AI book collects the opinions of the luminaries of the AI business, such as Stuart Russell (coauthor of the leading AI textbook), Rodney Brooks (a leader in AI robotics), Demis Hassabis (chess prodigy and mind behind AlphaGo), and Yoshua Bengio (leader in deep learning) to complete your AI education and give you an AI advantage in 2019 and the future.
Publisher: Packt Publishing Ltd
ISBN: 178913126X
Category : Computers
Languages : en
Pages : 540
Book Description
Financial Times Best Books of the Year 2018 TechRepublic Top Books Every Techie Should Read Book Description How will AI evolve and what major innovations are on the horizon? What will its impact be on the job market, economy, and society? What is the path toward human-level machine intelligence? What should we be concerned about as artificial intelligence advances? Architects of Intelligence contains a series of in-depth, one-to-one interviews where New York Times bestselling author, Martin Ford, uncovers the truth behind these questions from some of the brightest minds in the Artificial Intelligence community. Martin has wide-ranging conversations with twenty-three of the world's foremost researchers and entrepreneurs working in AI and robotics: Demis Hassabis (DeepMind), Ray Kurzweil (Google), Geoffrey Hinton (Univ. of Toronto and Google), Rodney Brooks (Rethink Robotics), Yann LeCun (Facebook) , Fei-Fei Li (Stanford and Google), Yoshua Bengio (Univ. of Montreal), Andrew Ng (AI Fund), Daphne Koller (Stanford), Stuart Russell (UC Berkeley), Nick Bostrom (Univ. of Oxford), Barbara Grosz (Harvard), David Ferrucci (Elemental Cognition), James Manyika (McKinsey), Judea Pearl (UCLA), Josh Tenenbaum (MIT), Rana el Kaliouby (Affectiva), Daniela Rus (MIT), Jeff Dean (Google), Cynthia Breazeal (MIT), Oren Etzioni (Allen Institute for AI), Gary Marcus (NYU), and Bryan Johnson (Kernel). Martin Ford is a prominent futurist, and author of Financial Times Business Book of the Year, Rise of the Robots. He speaks at conferences and companies around the world on what AI and automation might mean for the future. Meet the minds behind the AI superpowers as they discuss the science, business and ethics of modern artificial intelligence. Read James Manyika’s thoughts on AI analytics, Geoffrey Hinton’s breakthroughs in AI programming and development, and Rana el Kaliouby’s insights into AI marketing. This AI book collects the opinions of the luminaries of the AI business, such as Stuart Russell (coauthor of the leading AI textbook), Rodney Brooks (a leader in AI robotics), Demis Hassabis (chess prodigy and mind behind AlphaGo), and Yoshua Bengio (leader in deep learning) to complete your AI education and give you an AI advantage in 2019 and the future.
Building AI Applications with Microsoft Semantic Kernel
Author: Lucas A. Meyer
Publisher: Packt Publishing Ltd
ISBN: 1835469590
Category : Computers
Languages : en
Pages : 252
Book Description
Unlock the power of GenAI by effortlessly linking your C# and Python apps with cutting-edge models, orchestrating diverse AI services with finesse, and crafting bespoke applications through immersive, real-world examples Key Features Link your C# and Python applications with the latest AI models from OpenAI Combine and orchestrate different AI services such as text and image generators Create your own AI apps with real-world use case examples that show you how to use basic generative AI, create images, process documents, use a vector database Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionIn the fast-paced world of AI, developers are constantly seeking efficient ways to integrate AI capabilities into their apps. Microsoft Semantic Kernel simplifies this process by using the GenAI features from Microsoft and OpenAI. Written by Lucas A. Meyer, a Principal Research Scientist in Microsoft’s AI for Good Lab, this book helps you get hands on with Semantic Kernel. It begins by introducing you to different generative AI services such as GPT-3.5 and GPT-4, demonstrating their integration with Semantic Kernel. You’ll then learn to craft prompt templates for reuse across various AI services and variables. Next, you’ll learn how to add functionality to Semantic Kernel by creating your own plugins. The second part of the book shows you how to combine multiple plugins to execute complex actions, and how to let Semantic Kernel use its own AI to solve complex problems by calling plugins, including the ones made by you. The book concludes by teaching you how to use vector databases to expand the memory of your AI services and how to help AI remember the context of earlier requests. You’ll also be guided through several real-world examples of applications, such as RAG and custom GPT agents. By the end of this book, you'll have gained the knowledge you need to start using Semantic Kernel to add AI capabilities to your applications.What you will learn Write reusable AI prompts and connect to different AI providers Create new plugins that extend the capabilities of AI services Understand how to combine multiple plugins to execute complex actions Orchestrate multiple AI services to accomplish a task Leverage the powerful planner to automatically create appropriate AI calls Use vector databases as additional memory for your AI tasks Deploy your application to ChatGPT, making it available to hundreds of millions of users Who this book is for This book is for beginner-level to experienced .NET or Python software developers who want to quickly incorporate the latest AI technologies into their applications, without having to learn the details of every new AI service. Product managers with some development experience will find this book helpful while creating proof-of-concept applications. This book requires working knowledge of programming basics.
Publisher: Packt Publishing Ltd
ISBN: 1835469590
Category : Computers
Languages : en
Pages : 252
Book Description
Unlock the power of GenAI by effortlessly linking your C# and Python apps with cutting-edge models, orchestrating diverse AI services with finesse, and crafting bespoke applications through immersive, real-world examples Key Features Link your C# and Python applications with the latest AI models from OpenAI Combine and orchestrate different AI services such as text and image generators Create your own AI apps with real-world use case examples that show you how to use basic generative AI, create images, process documents, use a vector database Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionIn the fast-paced world of AI, developers are constantly seeking efficient ways to integrate AI capabilities into their apps. Microsoft Semantic Kernel simplifies this process by using the GenAI features from Microsoft and OpenAI. Written by Lucas A. Meyer, a Principal Research Scientist in Microsoft’s AI for Good Lab, this book helps you get hands on with Semantic Kernel. It begins by introducing you to different generative AI services such as GPT-3.5 and GPT-4, demonstrating their integration with Semantic Kernel. You’ll then learn to craft prompt templates for reuse across various AI services and variables. Next, you’ll learn how to add functionality to Semantic Kernel by creating your own plugins. The second part of the book shows you how to combine multiple plugins to execute complex actions, and how to let Semantic Kernel use its own AI to solve complex problems by calling plugins, including the ones made by you. The book concludes by teaching you how to use vector databases to expand the memory of your AI services and how to help AI remember the context of earlier requests. You’ll also be guided through several real-world examples of applications, such as RAG and custom GPT agents. By the end of this book, you'll have gained the knowledge you need to start using Semantic Kernel to add AI capabilities to your applications.What you will learn Write reusable AI prompts and connect to different AI providers Create new plugins that extend the capabilities of AI services Understand how to combine multiple plugins to execute complex actions Orchestrate multiple AI services to accomplish a task Leverage the powerful planner to automatically create appropriate AI calls Use vector databases as additional memory for your AI tasks Deploy your application to ChatGPT, making it available to hundreds of millions of users Who this book is for This book is for beginner-level to experienced .NET or Python software developers who want to quickly incorporate the latest AI technologies into their applications, without having to learn the details of every new AI service. Product managers with some development experience will find this book helpful while creating proof-of-concept applications. This book requires working knowledge of programming basics.
Hands-On Artificial Intelligence with Java for Beginners
Author: Nisheeth Joshi
Publisher: Packt Publishing Ltd
ISBN: 1789531020
Category : Computers
Languages : en
Pages : 140
Book Description
Build, train, and deploy intelligent applications using Java libraries Key Features Leverage the power of Java libraries to build smart applications Build and train deep learning models for implementing artificial intelligence Learn various algorithms to automate complex tasks Book Description Artificial intelligence (AI) is increasingly in demand as well as relevant in the modern world, where everything is driven by technology and data. AI can be used for automating systems or processes to carry out complex tasks and functions in order to achieve optimal performance and productivity. Hands-On Artificial Intelligence with Java for Beginners begins by introducing you to AI concepts and algorithms. You will learn about various Java-based libraries and frameworks that can be used in implementing AI to build smart applications. In addition to this, the book teaches you how to implement easy to complex AI tasks, such as genetic programming, heuristic searches, reinforcement learning, neural networks, and segmentation, all with a practical approach. By the end of this book, you will not only have a solid grasp of AI concepts, but you'll also be able to build your own smart applications for multiple domains. What you will learn Leverage different Java packages and tools such as Weka, RapidMiner, and Deeplearning4j, among others Build machine learning models using supervised and unsupervised machine learning techniques Implement different deep learning algorithms in Deeplearning4j and build applications based on them Study the basics of heuristic searching and genetic programming Differentiate between syntactic and semantic similarity among texts Perform sentiment analysis for effective decision making with LingPipe Who this book is for Hands-On Artificial Intelligence with Java for Beginners is for Java developers who want to learn the fundamentals of artificial intelligence and extend their programming knowledge to build smarter applications.
Publisher: Packt Publishing Ltd
ISBN: 1789531020
Category : Computers
Languages : en
Pages : 140
Book Description
Build, train, and deploy intelligent applications using Java libraries Key Features Leverage the power of Java libraries to build smart applications Build and train deep learning models for implementing artificial intelligence Learn various algorithms to automate complex tasks Book Description Artificial intelligence (AI) is increasingly in demand as well as relevant in the modern world, where everything is driven by technology and data. AI can be used for automating systems or processes to carry out complex tasks and functions in order to achieve optimal performance and productivity. Hands-On Artificial Intelligence with Java for Beginners begins by introducing you to AI concepts and algorithms. You will learn about various Java-based libraries and frameworks that can be used in implementing AI to build smart applications. In addition to this, the book teaches you how to implement easy to complex AI tasks, such as genetic programming, heuristic searches, reinforcement learning, neural networks, and segmentation, all with a practical approach. By the end of this book, you will not only have a solid grasp of AI concepts, but you'll also be able to build your own smart applications for multiple domains. What you will learn Leverage different Java packages and tools such as Weka, RapidMiner, and Deeplearning4j, among others Build machine learning models using supervised and unsupervised machine learning techniques Implement different deep learning algorithms in Deeplearning4j and build applications based on them Study the basics of heuristic searching and genetic programming Differentiate between syntactic and semantic similarity among texts Perform sentiment analysis for effective decision making with LingPipe Who this book is for Hands-On Artificial Intelligence with Java for Beginners is for Java developers who want to learn the fundamentals of artificial intelligence and extend their programming knowledge to build smarter applications.