Author: Enrique Castillo
Publisher: John Wiley & Sons
ISBN: 0471461652
Category : Mathematics
Languages : en
Pages : 568
Book Description
Fundamental concepts of mathematical modeling Modeling is one of the most effective, commonly used tools in engineering and the applied sciences. In this book, the authors deal with mathematical programming models both linear and nonlinear and across a wide range of practical applications. Whereas other books concentrate on standard methods of analysis, the authors focus on the power of modeling methods for solving practical problems-clearly showing the connection between physical and mathematical realities-while also describing and exploring the main concepts and tools at work. This highly computational coverage includes: * Discussion and implementation of the GAMS programming system * Unique coverage of compatibility * Illustrative examples that showcase the connection between model and reality * Practical problems covering a wide range of scientific disciplines, as well as hundreds of examples and end-of-chapter exercises * Real-world applications to probability and statistics, electrical engineering, transportation systems, and more Building and Solving Mathematical Programming Models in Engineering and Science is practically suited for use as a professional reference for mathematicians, engineers, and applied or industrial scientists, while also tutorial and illustrative enough for advanced students in mathematics or engineering.
Building and Solving Mathematical Programming Models in Engineering and Science
Author: Enrique Castillo
Publisher: John Wiley & Sons
ISBN: 0471461652
Category : Mathematics
Languages : en
Pages : 568
Book Description
Fundamental concepts of mathematical modeling Modeling is one of the most effective, commonly used tools in engineering and the applied sciences. In this book, the authors deal with mathematical programming models both linear and nonlinear and across a wide range of practical applications. Whereas other books concentrate on standard methods of analysis, the authors focus on the power of modeling methods for solving practical problems-clearly showing the connection between physical and mathematical realities-while also describing and exploring the main concepts and tools at work. This highly computational coverage includes: * Discussion and implementation of the GAMS programming system * Unique coverage of compatibility * Illustrative examples that showcase the connection between model and reality * Practical problems covering a wide range of scientific disciplines, as well as hundreds of examples and end-of-chapter exercises * Real-world applications to probability and statistics, electrical engineering, transportation systems, and more Building and Solving Mathematical Programming Models in Engineering and Science is practically suited for use as a professional reference for mathematicians, engineers, and applied or industrial scientists, while also tutorial and illustrative enough for advanced students in mathematics or engineering.
Publisher: John Wiley & Sons
ISBN: 0471461652
Category : Mathematics
Languages : en
Pages : 568
Book Description
Fundamental concepts of mathematical modeling Modeling is one of the most effective, commonly used tools in engineering and the applied sciences. In this book, the authors deal with mathematical programming models both linear and nonlinear and across a wide range of practical applications. Whereas other books concentrate on standard methods of analysis, the authors focus on the power of modeling methods for solving practical problems-clearly showing the connection between physical and mathematical realities-while also describing and exploring the main concepts and tools at work. This highly computational coverage includes: * Discussion and implementation of the GAMS programming system * Unique coverage of compatibility * Illustrative examples that showcase the connection between model and reality * Practical problems covering a wide range of scientific disciplines, as well as hundreds of examples and end-of-chapter exercises * Real-world applications to probability and statistics, electrical engineering, transportation systems, and more Building and Solving Mathematical Programming Models in Engineering and Science is practically suited for use as a professional reference for mathematicians, engineers, and applied or industrial scientists, while also tutorial and illustrative enough for advanced students in mathematics or engineering.
Building and Solving Mathematical Programming Models in Engineering and Science
Author: Enrique Castillo
Publisher: Wiley-Interscience
ISBN: 9780471150435
Category : Mathematics
Languages : en
Pages : 568
Book Description
Fundamental concepts of mathematical modeling Modeling is one of the most effective, commonly used tools in engineering and the applied sciences. In this book, the authors deal with mathematical programming models both linear and nonlinear and across a wide range of practical applications. Whereas other books concentrate on standard methods of analysis, the authors focus on the power of modeling methods for solving practical problems-clearly showing the connection between physical and mathematical realities-while also describing and exploring the main concepts and tools at work. This highly computational coverage includes: * Discussion and implementation of the GAMS programming system * Unique coverage of compatibility * Illustrative examples that showcase the connection between model and reality * Practical problems covering a wide range of scientific disciplines, as well as hundreds of examples and end-of-chapter exercises * Real-world applications to probability and statistics, electrical engineering, transportation systems, and more Building and Solving Mathematical Programming Models in Engineering and Science is practically suited for use as a professional reference for mathematicians, engineers, and applied or industrial scientists, while also tutorial and illustrative enough for advanced students in mathematics or engineering.
Publisher: Wiley-Interscience
ISBN: 9780471150435
Category : Mathematics
Languages : en
Pages : 568
Book Description
Fundamental concepts of mathematical modeling Modeling is one of the most effective, commonly used tools in engineering and the applied sciences. In this book, the authors deal with mathematical programming models both linear and nonlinear and across a wide range of practical applications. Whereas other books concentrate on standard methods of analysis, the authors focus on the power of modeling methods for solving practical problems-clearly showing the connection between physical and mathematical realities-while also describing and exploring the main concepts and tools at work. This highly computational coverage includes: * Discussion and implementation of the GAMS programming system * Unique coverage of compatibility * Illustrative examples that showcase the connection between model and reality * Practical problems covering a wide range of scientific disciplines, as well as hundreds of examples and end-of-chapter exercises * Real-world applications to probability and statistics, electrical engineering, transportation systems, and more Building and Solving Mathematical Programming Models in Engineering and Science is practically suited for use as a professional reference for mathematicians, engineers, and applied or industrial scientists, while also tutorial and illustrative enough for advanced students in mathematics or engineering.
Methods and Models in Mathematical Programming
Author: S. A. MirHassani
Publisher: Springer Nature
ISBN: 3030270459
Category : Mathematics
Languages : en
Pages : 399
Book Description
This book focuses on mathematical modeling, describes the process of constructing and evaluating models, discusses the challenges and delicacies of the modeling process, and explicitly outlines the required rules and regulations so that the reader will be able to generalize and reuse concepts in other problems by relying on mathematical logic.Undergraduate and postgraduate students of different academic disciplines would find this book a suitable option preparing them for jobs and research fields requiring modeling techniques. Furthermore, this book can be used as a reference book for experts and practitioners requiring advanced skills of model building in their jobs.
Publisher: Springer Nature
ISBN: 3030270459
Category : Mathematics
Languages : en
Pages : 399
Book Description
This book focuses on mathematical modeling, describes the process of constructing and evaluating models, discusses the challenges and delicacies of the modeling process, and explicitly outlines the required rules and regulations so that the reader will be able to generalize and reuse concepts in other problems by relying on mathematical logic.Undergraduate and postgraduate students of different academic disciplines would find this book a suitable option preparing them for jobs and research fields requiring modeling techniques. Furthermore, this book can be used as a reference book for experts and practitioners requiring advanced skills of model building in their jobs.
Modelling in Mathematical Programming
Author: José Manuel García Sánchez
Publisher: Springer
ISBN: 9783030572525
Category : Business & Economics
Languages : en
Pages : 284
Book Description
This book provides basic tools for learning how to model in mathematical programming, from models without much complexity to complex system models. It presents a unique methodology for the building of an integral mathematical model, as well as new techniques that help build under own criteria. It allows readers to structure models from the elements and variables to the constraints, a basic modelling guide for any system with a new scheme of variables, a classification of constraints and also a set of rules to model specifications stated as logical propositions, helping to better understand models already existing in the literature. It also presents the modelling of all possible objectives that may arise in optimization problems regarding the variables values. The book is structured to guide the reader in an orderly manner, learning of the components that the methodology establishes in an optimization problem. The system includes the elements, which are all the actors that participate in the system, decision activities that occur in the system, calculations based on the decision activities, specifications such as regulations, impositions or actions of defined value and objective criterion, which guides the resolution of the system.
Publisher: Springer
ISBN: 9783030572525
Category : Business & Economics
Languages : en
Pages : 284
Book Description
This book provides basic tools for learning how to model in mathematical programming, from models without much complexity to complex system models. It presents a unique methodology for the building of an integral mathematical model, as well as new techniques that help build under own criteria. It allows readers to structure models from the elements and variables to the constraints, a basic modelling guide for any system with a new scheme of variables, a classification of constraints and also a set of rules to model specifications stated as logical propositions, helping to better understand models already existing in the literature. It also presents the modelling of all possible objectives that may arise in optimization problems regarding the variables values. The book is structured to guide the reader in an orderly manner, learning of the components that the methodology establishes in an optimization problem. The system includes the elements, which are all the actors that participate in the system, decision activities that occur in the system, calculations based on the decision activities, specifications such as regulations, impositions or actions of defined value and objective criterion, which guides the resolution of the system.
Real Analysis
Author: Mark Bridger
Publisher: John Wiley & Sons
ISBN: 1118367715
Category : Mathematics
Languages : en
Pages : 264
Book Description
A unique approach to analysis that lets you apply mathematics across a range of subjects This innovative text sets forth a thoroughly rigorous modern account of the theoretical underpinnings of calculus: continuity, differentiability, and convergence. Using a constructive approach, every proof of every result is direct and ultimately computationally verifiable. In particular, existence is never established by showing that the assumption of non-existence leads to a contradiction. The ultimate consequence of this method is that it makes sense not just to math majors but also to students from all branches of the sciences. The text begins with a construction of the real numbers beginning with the rationals, using interval arithmetic. This introduces readers to the reasoning and proof-writing skills necessary for doing and communicating mathematics, and it sets the foundation for the rest of the text, which includes: Early use of the Completeness Theorem to prove a helpful Inverse Function Theorem Sequences, limits and series, and the careful derivation of formulas and estimates for important functions Emphasis on uniform continuity and its consequences, such as boundedness and the extension of uniformly continuous functions from dense subsets Construction of the Riemann integral for functions uniformly continuous on an interval, and its extension to improper integrals Differentiation, emphasizing the derivative as a function rather than a pointwise limit Properties of sequences and series of continuous and differentiable functions Fourier series and an introduction to more advanced ideas in functional analysis Examples throughout the text demonstrate the application of new concepts. Readers can test their own skills with problems and projects ranging in difficulty from basic to challenging. This book is designed mainly for an undergraduate course, and the author understands that many readers will not go on to more advanced pure mathematics. He therefore emphasizes an approach to mathematical analysis that can be applied across a range of subjects in engineering and the sciences.
Publisher: John Wiley & Sons
ISBN: 1118367715
Category : Mathematics
Languages : en
Pages : 264
Book Description
A unique approach to analysis that lets you apply mathematics across a range of subjects This innovative text sets forth a thoroughly rigorous modern account of the theoretical underpinnings of calculus: continuity, differentiability, and convergence. Using a constructive approach, every proof of every result is direct and ultimately computationally verifiable. In particular, existence is never established by showing that the assumption of non-existence leads to a contradiction. The ultimate consequence of this method is that it makes sense not just to math majors but also to students from all branches of the sciences. The text begins with a construction of the real numbers beginning with the rationals, using interval arithmetic. This introduces readers to the reasoning and proof-writing skills necessary for doing and communicating mathematics, and it sets the foundation for the rest of the text, which includes: Early use of the Completeness Theorem to prove a helpful Inverse Function Theorem Sequences, limits and series, and the careful derivation of formulas and estimates for important functions Emphasis on uniform continuity and its consequences, such as boundedness and the extension of uniformly continuous functions from dense subsets Construction of the Riemann integral for functions uniformly continuous on an interval, and its extension to improper integrals Differentiation, emphasizing the derivative as a function rather than a pointwise limit Properties of sequences and series of continuous and differentiable functions Fourier series and an introduction to more advanced ideas in functional analysis Examples throughout the text demonstrate the application of new concepts. Readers can test their own skills with problems and projects ranging in difficulty from basic to challenging. This book is designed mainly for an undergraduate course, and the author understands that many readers will not go on to more advanced pure mathematics. He therefore emphasizes an approach to mathematical analysis that can be applied across a range of subjects in engineering and the sciences.
The Mathematics of Infinity
Author: Theodore G. Faticoni
Publisher: John Wiley & Sons
ISBN: 1118204484
Category : Mathematics
Languages : en
Pages : 360
Book Description
Praise for the First Edition ". . . an enchanting book for those people in computer science or mathematics who are fascinated by the concept of infinity."—Computing Reviews ". . . a very well written introduction to set theory . . . easy to read and well suited for self-study . . . highly recommended."—Choice The concept of infinity has fascinated and confused mankind for centuries with theories and ideas that cause even seasoned mathematicians to wonder. The Mathematics of Infinity: A Guide to Great Ideas, Second Edition uniquely explores how we can manipulate these ideas when our common sense rebels at the conclusions we are drawing. Continuing to draw from his extensive work on the subject, the author provides a user-friendly presentation that avoids unnecessary, in-depth mathematical rigor. This Second Edition provides important coverage of logic and sets, elements and predicates, cardinals as ordinals, and mathematical physics. Classic arguments and illustrative examples are provided throughout the book and are accompanied by a gradual progression of sophisticated notions designed to stun readers' intuitive view of the world. With an accessible and balanced treatment of both concepts and theory, the book focuses on the following topics: Logic, sets, and functions Prime numbers Counting infinite sets Well ordered sets Infinite cardinals Logic and meta-mathematics Inductions and numbers Presenting an intriguing account of the notions of infinity, The Mathematics of Infinity: A Guide to Great Ideas, Second Edition is an insightful supplement for mathematics courses on set theory at the undergraduate level. The book also serves as a fascinating reference for mathematically inclined individuals who are interested in learning about the world of counterintuitive mathematics.
Publisher: John Wiley & Sons
ISBN: 1118204484
Category : Mathematics
Languages : en
Pages : 360
Book Description
Praise for the First Edition ". . . an enchanting book for those people in computer science or mathematics who are fascinated by the concept of infinity."—Computing Reviews ". . . a very well written introduction to set theory . . . easy to read and well suited for self-study . . . highly recommended."—Choice The concept of infinity has fascinated and confused mankind for centuries with theories and ideas that cause even seasoned mathematicians to wonder. The Mathematics of Infinity: A Guide to Great Ideas, Second Edition uniquely explores how we can manipulate these ideas when our common sense rebels at the conclusions we are drawing. Continuing to draw from his extensive work on the subject, the author provides a user-friendly presentation that avoids unnecessary, in-depth mathematical rigor. This Second Edition provides important coverage of logic and sets, elements and predicates, cardinals as ordinals, and mathematical physics. Classic arguments and illustrative examples are provided throughout the book and are accompanied by a gradual progression of sophisticated notions designed to stun readers' intuitive view of the world. With an accessible and balanced treatment of both concepts and theory, the book focuses on the following topics: Logic, sets, and functions Prime numbers Counting infinite sets Well ordered sets Infinite cardinals Logic and meta-mathematics Inductions and numbers Presenting an intriguing account of the notions of infinity, The Mathematics of Infinity: A Guide to Great Ideas, Second Edition is an insightful supplement for mathematics courses on set theory at the undergraduate level. The book also serves as a fascinating reference for mathematically inclined individuals who are interested in learning about the world of counterintuitive mathematics.
Real Analysis
Author: Saul Stahl
Publisher: John Wiley & Sons
ISBN: 1118096851
Category : Mathematics
Languages : en
Pages : 316
Book Description
A provocative look at the tools and history of real analysis This new edition of Real Analysis: A Historical Approach continues to serve as an interesting read for students of analysis. Combining historical coverage with a superb introductory treatment, this book helps readers easily make the transition from concrete to abstract ideas. The book begins with an exciting sampling of classic and famous problems first posed by some of the greatest mathematicians of all time. Archimedes, Fermat, Newton, and Euler are each summoned in turn, illuminating the utility of infinite, power, and trigonometric series in both pure and applied mathematics. Next, Dr. Stahl develops the basic tools of advanced calculus, which introduce the various aspects of the completeness of the real number system as well as sequential continuity and differentiability and lead to the Intermediate and Mean Value Theorems. The Second Edition features: A chapter on the Riemann integral, including the subject of uniform continuity Explicit coverage of the epsilon-delta convergence A discussion of the modern preference for the viewpoint of sequences over that of series Throughout the book, numerous applications and examples reinforce concepts and demonstrate the validity of historical methods and results, while appended excerpts from original historical works shed light on the concerns of influential mathematicians in addition to the difficulties encountered in their work. Each chapter concludes with exercises ranging in level of complexity, and partial solutions are provided at the end of the book. Real Analysis: A Historical Approach, Second Edition is an ideal book for courses on real analysis and mathematical analysis at the undergraduate level. The book is also a valuable resource for secondary mathematics teachers and mathematicians.
Publisher: John Wiley & Sons
ISBN: 1118096851
Category : Mathematics
Languages : en
Pages : 316
Book Description
A provocative look at the tools and history of real analysis This new edition of Real Analysis: A Historical Approach continues to serve as an interesting read for students of analysis. Combining historical coverage with a superb introductory treatment, this book helps readers easily make the transition from concrete to abstract ideas. The book begins with an exciting sampling of classic and famous problems first posed by some of the greatest mathematicians of all time. Archimedes, Fermat, Newton, and Euler are each summoned in turn, illuminating the utility of infinite, power, and trigonometric series in both pure and applied mathematics. Next, Dr. Stahl develops the basic tools of advanced calculus, which introduce the various aspects of the completeness of the real number system as well as sequential continuity and differentiability and lead to the Intermediate and Mean Value Theorems. The Second Edition features: A chapter on the Riemann integral, including the subject of uniform continuity Explicit coverage of the epsilon-delta convergence A discussion of the modern preference for the viewpoint of sequences over that of series Throughout the book, numerous applications and examples reinforce concepts and demonstrate the validity of historical methods and results, while appended excerpts from original historical works shed light on the concerns of influential mathematicians in addition to the difficulties encountered in their work. Each chapter concludes with exercises ranging in level of complexity, and partial solutions are provided at the end of the book. Real Analysis: A Historical Approach, Second Edition is an ideal book for courses on real analysis and mathematical analysis at the undergraduate level. The book is also a valuable resource for secondary mathematics teachers and mathematicians.
Numerical Solution of Ordinary Differential Equations
Author: Kendall Atkinson
Publisher: John Wiley & Sons
ISBN: 047004294X
Category : Mathematics
Languages : en
Pages : 270
Book Description
A concise introduction to numerical methodsand the mathematical framework neededto understand their performance Numerical Solution of Ordinary Differential Equations presents a complete and easy-to-follow introduction to classical topics in the numerical solution of ordinary differential equations. The book's approach not only explains the presented mathematics, but also helps readers understand how these numerical methods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringing together and categorizing different types of problems in order to help readers comprehend the applications of ordinary differential equations. In addition, the authors' collective academic experience ensures a coherent and accessible discussion of key topics, including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to test and build their knowledge of the presented methods, and a related Web site features MATLAB® programs that facilitate the exploration of numerical methods in greater depth. Detailed references outline additional literature on both analytical and numerical aspects of ordinary differential equations for further exploration of individual topics. Numerical Solution of Ordinary Differential Equations is an excellent textbook for courses on the numerical solution of differential equations at the upper-undergraduate and beginning graduate levels. It also serves as a valuable reference for researchers in the fields of mathematics and engineering.
Publisher: John Wiley & Sons
ISBN: 047004294X
Category : Mathematics
Languages : en
Pages : 270
Book Description
A concise introduction to numerical methodsand the mathematical framework neededto understand their performance Numerical Solution of Ordinary Differential Equations presents a complete and easy-to-follow introduction to classical topics in the numerical solution of ordinary differential equations. The book's approach not only explains the presented mathematics, but also helps readers understand how these numerical methods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringing together and categorizing different types of problems in order to help readers comprehend the applications of ordinary differential equations. In addition, the authors' collective academic experience ensures a coherent and accessible discussion of key topics, including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to test and build their knowledge of the presented methods, and a related Web site features MATLAB® programs that facilitate the exploration of numerical methods in greater depth. Detailed references outline additional literature on both analytical and numerical aspects of ordinary differential equations for further exploration of individual topics. Numerical Solution of Ordinary Differential Equations is an excellent textbook for courses on the numerical solution of differential equations at the upper-undergraduate and beginning graduate levels. It also serves as a valuable reference for researchers in the fields of mathematics and engineering.
Beginning Partial Differential Equations
Author: Peter V. O'Neil
Publisher: John Wiley & Sons
ISBN: 1118629981
Category : Mathematics
Languages : en
Pages : 452
Book Description
A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible, combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger’s equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is organized around four themes: methods of solution for initial-boundary value problems; applications of partial differential equations; existence and properties of solutions; and the use of software to experiment with graphics and carry out computations. With a primary focus on wave and diffusion processes, Beginning Partial Differential Equations, Third Edition also includes: Proofs of theorems incorporated within the topical presentation, such as the existence of a solution for the Dirichlet problem The incorporation of MapleTM to perform computations and experiments Unusual applications, such as Poe’s pendulum Advanced topical coverage of special functions, such as Bessel, Legendre polynomials, and spherical harmonics Fourier and Laplace transform techniques to solve important problems Beginning of Partial Differential Equations, Third Edition is an ideal textbook for upper-undergraduate and first-year graduate-level courses in analysis and applied mathematics, science, and engineering.
Publisher: John Wiley & Sons
ISBN: 1118629981
Category : Mathematics
Languages : en
Pages : 452
Book Description
A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible, combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger’s equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is organized around four themes: methods of solution for initial-boundary value problems; applications of partial differential equations; existence and properties of solutions; and the use of software to experiment with graphics and carry out computations. With a primary focus on wave and diffusion processes, Beginning Partial Differential Equations, Third Edition also includes: Proofs of theorems incorporated within the topical presentation, such as the existence of a solution for the Dirichlet problem The incorporation of MapleTM to perform computations and experiments Unusual applications, such as Poe’s pendulum Advanced topical coverage of special functions, such as Bessel, Legendre polynomials, and spherical harmonics Fourier and Laplace transform techniques to solve important problems Beginning of Partial Differential Equations, Third Edition is an ideal textbook for upper-undergraduate and first-year graduate-level courses in analysis and applied mathematics, science, and engineering.
Extremes and Recurrence in Dynamical Systems
Author: Valerio Lucarini
Publisher: John Wiley & Sons
ISBN: 1118632354
Category : Mathematics
Languages : en
Pages : 367
Book Description
Written by a team of international experts, Extremes and Recurrence in Dynamical Systems presents a unique point of view on the mathematical theory of extremes and on its applications in the natural and social sciences. Featuring an interdisciplinary approach to new concepts in pure and applied mathematical research, the book skillfully combines the areas of statistical mechanics, probability theory, measure theory, dynamical systems, statistical inference, geophysics, and software application. Emphasizing the statistical mechanical point of view, the book introduces robust theoretical embedding for the application of extreme value theory in dynamical systems. Extremes and Recurrence in Dynamical Systems also features: • A careful examination of how a dynamical system can serve as a generator of stochastic processes • Discussions on the applications of statistical inference in the theoretical and heuristic use of extremes • Several examples of analysis of extremes in a physical and geophysical context • A final summary of the main results presented along with a guide to future research projects • An appendix with software in Matlab® programming language to help readers to develop further understanding of the presented concepts Extremes and Recurrence in Dynamical Systems is ideal for academics and practitioners in pure and applied mathematics, probability theory, statistics, chaos, theoretical and applied dynamical systems, statistical mechanics, geophysical fluid dynamics, geosciences and complexity science. VALERIO LUCARINI, PhD, is Professor of Theoretical Meteorology at the University of Hamburg, Germany and Professor of Statistical Mechanics at the University of Reading, UK. DAVIDE FARANDA, PhD, is Researcher at the Laboratoire des science du climat et de l’environnement, IPSL, CEA Saclay, Université Paris-Saclay, Gif-sur-Yvette, France. ANA CRISTINA GOMES MONTEIRO MOREIRA DE FREITAS, PhD, is Assistant Professor in the Faculty of Economics at the University of Porto, Portugal. JORGE MIGUEL MILHAZES DE FREITAS, PhD, is Assistant Professor in the Department of Mathematics of the Faculty of Sciences at the University of Porto, Portugal. MARK HOLLAND, PhD, is Senior Lecturer in Applied Mathematics in the College of Engineering, Mathematics and Physical Sciences at the University of Exeter, UK. TOBIAS KUNA, PhD, is Associate Professor in the Department of Mathematics and Statistics at the University of Reading, UK. MATTHEW NICOL, PhD, is Professor of Mathematics at the University of Houston, USA. MIKE TODD, PhD, is Lecturer in the School of Mathematics and Statistics at the University of St. Andrews, Scotland. SANDRO VAIENTI, PhD, is Professor of Mathematics at the University of Toulon and Researcher at the Centre de Physique Théorique, France.
Publisher: John Wiley & Sons
ISBN: 1118632354
Category : Mathematics
Languages : en
Pages : 367
Book Description
Written by a team of international experts, Extremes and Recurrence in Dynamical Systems presents a unique point of view on the mathematical theory of extremes and on its applications in the natural and social sciences. Featuring an interdisciplinary approach to new concepts in pure and applied mathematical research, the book skillfully combines the areas of statistical mechanics, probability theory, measure theory, dynamical systems, statistical inference, geophysics, and software application. Emphasizing the statistical mechanical point of view, the book introduces robust theoretical embedding for the application of extreme value theory in dynamical systems. Extremes and Recurrence in Dynamical Systems also features: • A careful examination of how a dynamical system can serve as a generator of stochastic processes • Discussions on the applications of statistical inference in the theoretical and heuristic use of extremes • Several examples of analysis of extremes in a physical and geophysical context • A final summary of the main results presented along with a guide to future research projects • An appendix with software in Matlab® programming language to help readers to develop further understanding of the presented concepts Extremes and Recurrence in Dynamical Systems is ideal for academics and practitioners in pure and applied mathematics, probability theory, statistics, chaos, theoretical and applied dynamical systems, statistical mechanics, geophysical fluid dynamics, geosciences and complexity science. VALERIO LUCARINI, PhD, is Professor of Theoretical Meteorology at the University of Hamburg, Germany and Professor of Statistical Mechanics at the University of Reading, UK. DAVIDE FARANDA, PhD, is Researcher at the Laboratoire des science du climat et de l’environnement, IPSL, CEA Saclay, Université Paris-Saclay, Gif-sur-Yvette, France. ANA CRISTINA GOMES MONTEIRO MOREIRA DE FREITAS, PhD, is Assistant Professor in the Faculty of Economics at the University of Porto, Portugal. JORGE MIGUEL MILHAZES DE FREITAS, PhD, is Assistant Professor in the Department of Mathematics of the Faculty of Sciences at the University of Porto, Portugal. MARK HOLLAND, PhD, is Senior Lecturer in Applied Mathematics in the College of Engineering, Mathematics and Physical Sciences at the University of Exeter, UK. TOBIAS KUNA, PhD, is Associate Professor in the Department of Mathematics and Statistics at the University of Reading, UK. MATTHEW NICOL, PhD, is Professor of Mathematics at the University of Houston, USA. MIKE TODD, PhD, is Lecturer in the School of Mathematics and Statistics at the University of St. Andrews, Scotland. SANDRO VAIENTI, PhD, is Professor of Mathematics at the University of Toulon and Researcher at the Centre de Physique Théorique, France.