Building a Platform for Data-Driven Pandemic Prediction

Building a Platform for Data-Driven Pandemic Prediction PDF Author: Dani Gamerman
Publisher: CRC Press
ISBN: 1000457192
Category : Medical
Languages : en
Pages : 383

Get Book Here

Book Description
This book is about building platforms for pandemic prediction. It provides an overview of probabilistic prediction for pandemic modeling based on a data-driven approach. It also provides guidance on building platforms with currently available technology using tools such as R, Shiny, and interactive plotting programs. The focus is on the integration of statistics and computing tools rather than on an in-depth analysis of all possibilities on each side. Readers can follow different reading paths through the book, depending on their needs. The book is meant as a basis for further investigation of statistical modelling, implementation tools, monitoring aspects, and software functionalities. Features: A general but parsimonious class of models to perform statistical prediction for epidemics, using a Bayesian approach Implementation of automated routines to obtain daily prediction results How to interactively visualize the model results Strategies for monitoring the performance of the predictions and identifying potential issues in the results Discusses the many decisions required to develop and publish online platforms Supplemented by an R package and its specific functionalities to model epidemic outbreaks The book is geared towards practitioners with an interest in the development and presentation of results in an online platform of statistical analysis of epidemiological data. The primary audience includes applied statisticians, biostatisticians, computer scientists, epidemiologists, and professionals interested in learning more about epidemic modelling in general, including the COVID-19 pandemic, and platform building. The authors are professors at the Statistics Department at Universidade Federal de Minas Gerais. Their research records exhibit contributions applied to a number of areas of Science, including Epidemiology. Their research activities include books published with Chapman and Hall/CRC and papers in high quality journals. They have also been involved with academic management of graduate programs in Statistics and one of them is currently the President of the Brazilian Statistical Association.

Building a Platform for Data-Driven Pandemic Prediction

Building a Platform for Data-Driven Pandemic Prediction PDF Author: Dani Gamerman
Publisher: CRC Press
ISBN: 1000457192
Category : Medical
Languages : en
Pages : 383

Get Book Here

Book Description
This book is about building platforms for pandemic prediction. It provides an overview of probabilistic prediction for pandemic modeling based on a data-driven approach. It also provides guidance on building platforms with currently available technology using tools such as R, Shiny, and interactive plotting programs. The focus is on the integration of statistics and computing tools rather than on an in-depth analysis of all possibilities on each side. Readers can follow different reading paths through the book, depending on their needs. The book is meant as a basis for further investigation of statistical modelling, implementation tools, monitoring aspects, and software functionalities. Features: A general but parsimonious class of models to perform statistical prediction for epidemics, using a Bayesian approach Implementation of automated routines to obtain daily prediction results How to interactively visualize the model results Strategies for monitoring the performance of the predictions and identifying potential issues in the results Discusses the many decisions required to develop and publish online platforms Supplemented by an R package and its specific functionalities to model epidemic outbreaks The book is geared towards practitioners with an interest in the development and presentation of results in an online platform of statistical analysis of epidemiological data. The primary audience includes applied statisticians, biostatisticians, computer scientists, epidemiologists, and professionals interested in learning more about epidemic modelling in general, including the COVID-19 pandemic, and platform building. The authors are professors at the Statistics Department at Universidade Federal de Minas Gerais. Their research records exhibit contributions applied to a number of areas of Science, including Epidemiology. Their research activities include books published with Chapman and Hall/CRC and papers in high quality journals. They have also been involved with academic management of graduate programs in Statistics and one of them is currently the President of the Brazilian Statistical Association.

Building a Platform for Data-Driven Pandemic Prediction

Building a Platform for Data-Driven Pandemic Prediction PDF Author: Dani Gamerman
Publisher: CRC Press
ISBN: 1000457222
Category : Medical
Languages : en
Pages : 414

Get Book Here

Book Description
This book is about building platforms for pandemic prediction. It provides an overview of probabilistic prediction for pandemic modeling based on a data-driven approach. It also provides guidance on building platforms with currently available technology using tools such as R, Shiny, and interactive plotting programs. The focus is on the integration of statistics and computing tools rather than on an in-depth analysis of all possibilities on each side. Readers can follow different reading paths through the book, depending on their needs. The book is meant as a basis for further investigation of statistical modelling, implementation tools, monitoring aspects, and software functionalities. Features: A general but parsimonious class of models to perform statistical prediction for epidemics, using a Bayesian approach Implementation of automated routines to obtain daily prediction results How to interactively visualize the model results Strategies for monitoring the performance of the predictions and identifying potential issues in the results Discusses the many decisions required to develop and publish online platforms Supplemented by an R package and its specific functionalities to model epidemic outbreaks The book is geared towards practitioners with an interest in the development and presentation of results in an online platform of statistical analysis of epidemiological data. The primary audience includes applied statisticians, biostatisticians, computer scientists, epidemiologists, and professionals interested in learning more about epidemic modelling in general, including the COVID-19 pandemic, and platform building. The authors are professors at the Statistics Department at Universidade Federal de Minas Gerais. Their research records exhibit contributions applied to a number of areas of Science, including Epidemiology. Their research activities include books published with Chapman and Hall/CRC and papers in high quality journals. They have also been involved with academic management of graduate programs in Statistics and one of them is currently the President of the Brazilian Statistical Association.

Microbial Resolution

Microbial Resolution PDF Author: Gloria Chan-Sook Kim
Publisher: U of Minnesota Press
ISBN: 1452971315
Category : Science
Languages : en
Pages : 208

Get Book Here

Book Description
Why the global health project to avert emerging microbes continually fails In 1989, a group of U.S. government scientists met to discuss some surprising findings: new diseases were appearing around the world, and viruses that they thought long vanquished were resurfacing. Their appearance heralded a future perpetually threatened by unforeseeable biological risks, sparking a new concept of disease: the “emerging microbe.” With the Cold War nearing its end, American scientists and security experts turned to confront this new “enemy,” redirecting national security against its risky horizons. In order to be fought, emerging microbes first needed to be made perceptible; but how could something immaterial, unknowable, and ever mutating be coaxed into visibility, knowability, and operability? Microbial Resolution charts the U.S.-led war on the emerging microbe to show how their uncertain futures were transformed into objects of global science and security. Moving beyond familiar accounts that link scientific knowledge production to optical practices of visualizing the invisible, Gloria Chan-Sook Kim develops a theory of “microbial resolution” to analyze the complex problematic that arises when dealing with these entities: what can be seen when there is nothing to see? Through a syncretic analysis of data mining, animal-tracking technologies, media networks, computer-modeled futures, and global ecologies and infrastructures, she shows how a visual impasse—the impossibility of seeing microbial futures—forms the basis for new modes of perceiving, knowing, and governing in the present. Timely and thought provoking, Microbial Resolution opens up the rich paradoxes, irreconcilabilities, and failures inherent in this project and demonstrates how these tensions profoundly animate twenty-first-century epistemologies, aesthetics, affects, and ecologies.

Healthcare Informatics for Fighting COVID-19 and Future Epidemics

Healthcare Informatics for Fighting COVID-19 and Future Epidemics PDF Author: Lalit Garg
Publisher: Springer Nature
ISBN: 3030727521
Category : Technology & Engineering
Languages : en
Pages : 444

Get Book Here

Book Description
This book presents innovative solutions utilising informatics to deal with various issues related to the COVID-19 outbreak. The book offers a collection of contemporary research and development on the management of Covid-19 using health data analytics, information exchange, knowledge sharing, the Internet of Things (IoT), and the Internet of Everything (IoE)-based solutions. The book also analyses the implementation, assessment, adoption, and management of these healthcare informatics solutions to manage the pandemic and future epidemics. The book is relevant to researchers, professors, students, and professionals in informatics and related topics.

Databases Theory and Applications

Databases Theory and Applications PDF Author: Wen Hua
Publisher: Springer Nature
ISBN: 3031155122
Category : Computers
Languages : en
Pages : 223

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 33rd International Conference on Databases Theory and Applications, ADC 2022, held in Sydney, Australia, in September 2022. The conference is co-located with the 48th International Conference on Very Large Data Bases, VLDB 2022. The 9 full papers presented together with 8 short papers were carefully reviewed and selected from 36 submissions. ADC focuses on database systems, data-driven applications, and data analytics.

Markov Chain Monte Carlo

Markov Chain Monte Carlo PDF Author: Dani Gamerman
Publisher: CRC Press
ISBN: 9780412818202
Category : Mathematics
Languages : en
Pages : 264

Get Book Here

Book Description
Bridging the gap between research and application, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference provides a concise, and integrated account of Markov chain Monte Carlo (MCMC) for performing Bayesian inference. This volume, which was developed from a short course taught by the author at a meeting of Brazilian statisticians and probabilists, retains the didactic character of the original course text. The self-contained text units make MCMC accessible to scientists in other disciplines as well as statisticians. It describes each component of the theory in detail and outlines related software, which is of particular benefit to applied scientists.

Business Intelligence and Human Resource Management

Business Intelligence and Human Resource Management PDF Author: Deepmala Singh
Publisher: CRC Press
ISBN: 1000619389
Category : Business & Economics
Languages : en
Pages : 250

Get Book Here

Book Description
Business Intelligence (BI) is a solution to modern business problems. This book discusses the relationship between BI and Human Resource Management (HRM). In addition, it discusses how BI can be used as a strategic decision-making tool for the sustainable growth of an organization or business. BI helps organizations generate interactive reports with clear and reliable data for making numerous business decisions. This book covers topics spanning the important areas of BI in the context of HRM. It gives an overview of the aspects, tools, and techniques of BI and how it can assist HRM in creating a successful future for organizations. Some of the tools and techniques discussed in the book are analysis, data preparation, BI-testing, implementation, and optimization on GR and management disciplines. It will include a chapter on text mining as well as a section of case studies for practical use. This book will be useful for business professionals, including but not limited to, HR professionals, and budding business students.

COVID-19: Analysis, Classification, and Detection Using Scikit-Learn, Keras, and TensorFlow with Python GUI

COVID-19: Analysis, Classification, and Detection Using Scikit-Learn, Keras, and TensorFlow with Python GUI PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 286

Get Book Here

Book Description
In this comprehensive project, "COVID-19: Analysis, Classification, and Detection Using Scikit-Learn, Keras, and TensorFlow with Python GUI," the primary objective is to leverage various machine learning and deep learning techniques to analyze and classify COVID-19 cases based on numerical data and medical image data. The project begins by exploring the dataset, gaining insights into its structure and content. This initial data exploration aids in understanding the distribution of categorized features, providing valuable context for subsequent analysis. With insights gained from data exploration, the project delves into predictive modeling using machine learning. It employs Scikit-Learn to build and fine-tune predictive models, harnessing grid search for hyperparameter optimization. This meticulous process ensures that the machine learning models, such as Naïve Bayes, K-Nearest Neighbors, Decision Trees, Random Forests, Gradient Boosting, Extreme Gradient Boosting, Multi-Layer Perceptron, AdaBoost, and Logistic Regression, are optimized to accurately predict the risk of COVID-19 based on the input features. Transitioning to the realm of deep learning, the project employs Convolutional Neural Networks (CNNs) to perform intricate image classification tasks. Leveraging Keras and TensorFlow, the CNN architecture is meticulously crafted, comprising convolutional and pooling layers, dropout regularization, and dense layers. The project also extends its deep learning capabilities by utilizing the VGG16 pre-trained model, harnessing its powerful feature extraction capabilities for COVID-19 image classification. To gauge the effectiveness of the trained models, an array of performance metrics is utilized. In this project, a range of metrics are used to evaluate the performance of machine learning and deep learning models employed for COVID-19 classification. These metrics include Accuracy, which measures the overall correctness of predictions; Precision, emphasizing the accuracy of positive predictions; Recall (Sensitivity), assessing the model's ability to identify positive instances; and F1-Score, a balanced measure of accuracy. The Mean Squared Error (MSE) quantifies the magnitude of errors in regression tasks, while the Confusion Matrix summarizes classification results by showing counts of true positives, true negatives, false positives, and false negatives. These metrics together provide a comprehensive understanding of model performance. They help gauge the model's accuracy, the balance between precision and recall, and its proficiency in classifying both positive and negative instances. In the medical context of COVID-19 classification, these metrics play a vital role in evaluating the models' reliability and effectiveness in real-world applications. The project further enriches its analytical capabilities by developing an interactive Python GUI. This graphical user interface streamlines the user experience, facilitating data input, model training, and prediction. Users are empowered to input medical images for classification, leveraging the trained machine learning and deep learning models to assess COVID-19 risk. The culmination of the project lies in the accurate prediction of COVID-19 risk through a combined approach of machine learning and deep learning techniques. The Python GUI using PyQt5 provides a user-friendly platform for clinicians and researchers to interact with the models, fostering informed decision-making based on reliable and data-driven predictions. In conclusion, this project represents a comprehensive endeavor to harness the power of machine learning and deep learning for the vital task of COVID-19 classification. Through rigorous data exploration, model training, and performance evaluation, the project yields a robust framework for risk prediction, contributing to the broader efforts to combat the ongoing pandemic.

Artificial Intelligence for COVID-19

Artificial Intelligence for COVID-19 PDF Author: Diego Oliva
Publisher: Springer Nature
ISBN: 3030697444
Category : Technology & Engineering
Languages : en
Pages : 585

Get Book Here

Book Description
This book presents a compilation of the most recent implementation of artificial intelligence methods for solving different problems generated by the COVID-19. The problems addressed came from different fields and not only from medicine. The information contained in the book explores different areas of machine and deep learning, advanced image processing, computational intelligence, IoT, robotics and automation, optimization, mathematical modeling, neural networks, information technology, big data, data processing, data mining, and likewise. Moreover, the chapters include the theory and methodologies used to provide an overview of applying these tools to the useful contribution to help to face the emerging disaster. The book is primarily intended for researchers, decision makers, practitioners, and readers interested in these subject matters. The book is useful also as rich case studies and project proposals for postgraduate courses in those specializations.

Pandemic Detection and Analysis Through Smart Computing Technologies

Pandemic Detection and Analysis Through Smart Computing Technologies PDF Author: Ram Shringar Raw
Publisher: CRC Press
ISBN: 1000571890
Category : Computers
Languages : en
Pages : 329

Get Book Here

Book Description
This powerful new volume explores the diverse and sometimes unexpected roles that IoT and AI technologies played during the recent COVID-19 global pandemic. The book discusses the how existing and new state-of-the art technology has been and can be applied for global health crises in a multitude of ways. The chapters in Pandemic Detection and Analysis through Smart Computing Technologies look at exciting technological solutions for virus detection, prediction, classification, prevention, and communication outreach. The book considers the various modes of transmission of the virus as well as how technology has been implemented for personalized healthcare systems and how it can be used for future pandemics. The huge importance of social and mobile communication and networks during the pandemic is addressed such as in business, education, and healthcare; in research and development; for health information and outreach; in social life; and more. A chapter also addresses using smart computing for forecasting the damage caused by COVID-19 using time series analyses. This up-to-the-minute volume illuminates on the many ways AI, IoT, machine learning, and other technologies have important roles in the diverse challenges faced during COVID-19 and how they can be enhanced for future pandemic situations. The volume will be of high interest to those in different fields of computer science and other domains as well as to data scientists, government agencies and policymakers, doctors and healthcare professionals, engineers, economists, and many other professionals. This book will also be very helpful to faculty, students, and research scholars in understanding the pre- and post-effect of this pandemic.