Brassica Breeding and Biotechnology

Brassica Breeding and Biotechnology PDF Author: A. K. M. Mominul Islam
Publisher:
ISBN: 9781839686986
Category : Brassica
Languages : en
Pages : 0

Get Book Here

Book Description
The family Brassicaceae constitutes one of the world's most economically important plant groups. These plants are important sources of vegetable oil, vegetables, and condiments. Most of these crops belong to the genus Brassica, which includes common crops such as oilseeds (oilseed rape, mustard) and vegetables (broccoli, cauliflower, brussels sprouts, cabbage, turnip, Chinese cabbage, etc.). Brassica species play an essential role in horticulture and agriculture as well as contribute to the health of populations around the world. The current global climatic model predicts a significant decrease in growth, yield, and productivity of Brassica due to various biotic and abiotic stress factors. Thus, high-yielding, climate-resilient, and disease-resistant Brassica varieties are required to maintain as well as increase future agricultural production. The development of improved cultivars of these crops may become exhausted and improvement could become stagnant when plant breeding is merely based on a single breeding approach. Therefore, the goal of a breeding program should be to develop genetically superior Brassica cultivars suitable for a wide range of environments. This book examines the introgression of insect and disease resistance and other desirable traits into Brassica crops using inter-and/or intra-specific hybridization as well as biotechnological and molecular techniques, which could be useful for improving Brassica crops to ensure food security.

Brassica Breeding and Biotechnology

Brassica Breeding and Biotechnology PDF Author: A. K. M. Mominul Islam
Publisher:
ISBN: 9781839686986
Category : Brassica
Languages : en
Pages : 0

Get Book Here

Book Description
The family Brassicaceae constitutes one of the world's most economically important plant groups. These plants are important sources of vegetable oil, vegetables, and condiments. Most of these crops belong to the genus Brassica, which includes common crops such as oilseeds (oilseed rape, mustard) and vegetables (broccoli, cauliflower, brussels sprouts, cabbage, turnip, Chinese cabbage, etc.). Brassica species play an essential role in horticulture and agriculture as well as contribute to the health of populations around the world. The current global climatic model predicts a significant decrease in growth, yield, and productivity of Brassica due to various biotic and abiotic stress factors. Thus, high-yielding, climate-resilient, and disease-resistant Brassica varieties are required to maintain as well as increase future agricultural production. The development of improved cultivars of these crops may become exhausted and improvement could become stagnant when plant breeding is merely based on a single breeding approach. Therefore, the goal of a breeding program should be to develop genetically superior Brassica cultivars suitable for a wide range of environments. This book examines the introgression of insect and disease resistance and other desirable traits into Brassica crops using inter-and/or intra-specific hybridization as well as biotechnological and molecular techniques, which could be useful for improving Brassica crops to ensure food security.

Molecular Genetics, Genomics and Biotechnology of Crop Plants Breeding

Molecular Genetics, Genomics and Biotechnology of Crop Plants Breeding PDF Author: Søren K. Rasmussen
Publisher: MDPI
ISBN: 3039288776
Category : Science
Languages : en
Pages : 238

Get Book Here

Book Description
This Special Issue on molecular genetics, genomics, and biotechnology in crop plant breeding seeks to encourage the use of the tools currently available. It features nine research papers that address quality traits, grain yield, and mutations by exploring cytoplasmic male sterility, the delicate control of flowering in rice, the removal of anti-nutritional factors, the use and development of new technologies for non-model species marker technology, site-directed mutagenesis and GMO regulation, genomics selection and genome-wide association studies, how to cope with abiotic stress, and an exploration of fruit trees adapted to harsh environments for breeding purposes. A further four papers review the genetics of pre-harvest spouting, readiness for climate-smart crop development, genomic selection in the breeding of cereal crops, and the large numbers of mutants in straw lignin biosynthesis and deposition.

Biology and Breeding of Crucifers

Biology and Breeding of Crucifers PDF Author: Surinder Kumar Gupta
Publisher: CRC Press
ISBN: 1040172881
Category : Science
Languages : en
Pages : 568

Get Book Here

Book Description
Considerable interest has developed in recent years in crucifers and particularly in their wild relatives, as they contain genetic material that may be utilized for further evolution of superior crop varieties through introgression and distant hybridization. Until now, there has been no single volume that focuses exclusively on the biology and bree

Plant Biotechnology and Molecular Markers

Plant Biotechnology and Molecular Markers PDF Author: S. Srivastava
Publisher: Springer Science & Business Media
ISBN: 1402032137
Category : Science
Languages : en
Pages : 411

Get Book Here

Book Description
The genesis of the volume, Plant Biotechnology and Molecular Markers, has been the occasion of the retirement of Professor Sant Saran Bhojwani from the Department of Botany, University of Delhi. For Professor Bhojwani, retirement only means relinquishing the chair as being a researcher and a teacher which has always been a way of life to him. Professor Bhojwani has been an ardent practitioner of modern plant biology and areas like Plant Biotechnology and Molecular Breeding have been close to his heart. The book contains original as well as review articles contributed by his admirers and associates who are experts in their area of research. While planning this contributory book our endeavour has been to incorporate articles that cover the entire gamut of Plant Biotechnology, and also applications of Molecular Markers. Besides articles on in vitro fertilization and micropropagation, there are articles on forest tree improvement through genetic engineering. Considering the importance of conservation of our precious natural wealth, one article deals with cryopreservation of plant material. Chapter on molecular marker considers DNA indexing as markers of clonal fidelity of in vitro regenerated plants and prevention against bio-piracy. A couple of write-ups also cover stage-specific gene markers, DNA polymorphism and genetic engineering, including raising of stress tolerant plants to sustain productivity and help in reclamation of degraded land.

Genetics and Genomics of the Brassicaceae

Genetics and Genomics of the Brassicaceae PDF Author: Renate Schmidt
Publisher: Springer Science & Business Media
ISBN: 1441971181
Category : Science
Languages : en
Pages : 675

Get Book Here

Book Description
The Genetics and Genomics of the Brassicaceae provides a review of this important family (commonly termed the mustard family, or Cruciferae). The family contains several cultivated species, including radish, rocket, watercress, wasabi and horseradish, in addition to the vegetable and oil crops of the Brassica genus. There are numerous further species with great potential for exploitation in 21st century agriculture, particularly as sources of bioactive chemicals. These opportunities are reviewed, in the context of the Brassicaceae in agriculture. More detailed descriptions are provided of the genetics of the cultivated Brassica crops, including both the species producing most of the brassica vegetable crops (B. rapa and B. oleracea) and the principal species producing oilseed crops (B. napus and B. juncea). The Brassicaceae also include important “model” plant species. Most prominent is Arabidopsis thaliana, the first plant species to have its genome sequenced. Natural genetic variation is reviewed for A. thaliana, as are the genetics of the closely related A. lyrata and of the genus Capsella. Self incompatibility is widespread in the Brassicaceae, and this subject is reviewed. Interest arising from both the commercial value of crop species of the Brassicaceae and the importance of Arabidopsis thaliana as a model species, has led to the development of numerous resources to support research. These are reviewed, including germplasm and genomic library resources, and resources for reverse genetics, metabolomics, bioinformatics and transformation. Molecular studies of the genomes of species of the Brassicaceae revealed extensive genome duplication, indicative of multiple polyploidy events during evolution. In some species, such as Brassica napus, there is evidence of multiple rounds of polyploidy during its relatively recent evolution, thus the Brassicaceae represent an excellent model system for the study of the impacts of polyploidy and the subsequent process of diploidisation, whereby the genome stabilises. Sequence-level characterization of the genomes of Arabidopsis thaliana and Brassica rapa are presented, along with summaries of comparative studies conducted at both linkage map and sequence level, and analysis of the structural and functional evolution of resynthesised polyploids, along with a description of the phylogeny and karyotype evolution of the Brassicaceae. Finally, some perspectives of the editors are presented. These focus upon the Brassicaceae species as models for studying genome evolution following polyploidy, the impact of advances in genome sequencing technology, prospects for future transcriptome analysis and upcoming model systems.

Oil Crops

Oil Crops PDF Author: Johann Vollmann
Publisher: Springer Science & Business Media
ISBN: 0387775943
Category : Science
Languages : en
Pages : 557

Get Book Here

Book Description
When one is privileged to participate long enough in a professional capacity, certain trends may be observed in the dynamics of how challenges are met or how problems are solved. Agricultural research is no exception in view of how the plant sciences have moved forward in the past 30 years. For example, the once grand but now nearly forgotten art of whole plant physiology has given way almost completely to the more sophisticated realm of molecular biology. What once was the American Society of Plant Physiologists’ is now the American Society of Plant Molecular Biology; a democratic decision to indemnify efforts to go beyond the limits of the classical science and actually begin to understand the underlying biological basis for genetic regulation of metabolic mechanisms in plants. Yet, as new technologies open windows of light on the inner workings of biological processes, one might reminisce with faint nostalgia on days long past when the artisans of plant physiology, biochemistry, analytical chemistry and other scientific disciplines ebbed and waned in prominence. No intentional reference is made here regarding Darwinism; the plant sciences always have been extremely competitive. Technology is pivotal. Those who develop and/or implement innovative concepts typically are regarded as leaders in their respective fields. Each positive incremental step helps bring recognition and the impetus to push a scientific discipline forward with timely approaches to address relevant opportunities.

Applied Plant Genomics and Biotechnology

Applied Plant Genomics and Biotechnology PDF Author: Palmiro Poltronieri
Publisher: Woodhead Publishing
ISBN: 0081000715
Category : Science
Languages : en
Pages : 354

Get Book Here

Book Description
Applied plant genomics and biotechnology reviews the recent advancements in the post-genomic era, discussing how different varieties respond to abiotic and biotic stresses, investigating epigenetic modifications and epigenetic memory through analysis of DNA methylation states, applicative uses of RNA silencing and RNA interference in plant physiology and in experimental transgenics, and plants modified to produce high-value pharmaceutical proteins. The book provides an overview of research advances in application of RNA silencing and RNA interference, through Virus-based transient gene expression systems, Virus induced gene complementation (VIGC), Virus induced gene silencing (Sir VIGS, Mr VIGS) Virus-based microRNA silencing (VbMS) and Virus-based RNA mobility assays (VRMA); RNA based vaccines and expression of virus proteins or RNA, and virus-like particles in plants, the potential of virus vaccines and therapeutics, and exploring plants as factories for useful products and pharmaceuticals are topics wholly deepened. The book reviews and discuss Plant Functional Genomic studies discussing the technologies supporting the genetic improvement of plants and the production of plant varieties more resistant to biotic and abiotic stresses. Several important crops are analysed providing a glimpse on the most up-to-date methods and topics of investigation. The book presents a review on current state of GMO, the cisgenesis-derived plants and novel plant products devoid of transgene elements, discuss their regulation and the production of desired traits such as resistance to viruses and disease also in fruit trees and wood trees with long vegetative periods. Several chapters cover aspects of plant physiology related to plant improvement: cytokinin metabolism and hormone signaling pathways are discussed in barley; PARP-domain proteins involved in Stress-Induced Morphogenetic Response, regulation of NAD signaling and ROS dependent synthesis of anthocyanins. Apple allergen isoforms and the various content in different varieties are discussed and approaches to reduce their presence. Euphorbiaceae, castor bean, cassava and Jathropa are discussed at genomic structure, their diseases and viruses, and methods of transformation. Rice genomics and agricultural traits are discussed, and biotechnology for engineering and improve rice varieties. Mango topics are presented with an overview of molecular methods for variety differentiation, and aspects of fruit improvement by traditional and biotechnology methods. Oilseed rape is presented, discussing the genetic diversity, quality traits, genetic maps, genomic selection and comparative genomics for improvement of varieties. Tomato studies are presented, with an overview on the knowledge of the regulatory networks involved in flowering, methods applied to study the tomato genome-wide DNA methylation, its regulation by small RNAs, microRNA-dependent control of transcription factors expression, the development and ripening processes in tomato, genomic studies and fruit modelling to establish fleshy fruit traits of interest; the gene reprogramming during fruit ripening, and the ethylene dependent and independent DNA methylation changes. - provides an overview on the ongoing projects and activities in the field of applied biotechnology - includes examples of different crops and applications to be exploited - reviews and discusses Plant Functional Genomic studies and the future developments in the field - explores the new technologies supporting the genetic improvement of plants

Brassica Oilseeds

Brassica Oilseeds PDF Author: D. S. Kimber
Publisher: Oxford University Press, USA
ISBN:
Category : Science
Languages : en
Pages : 414

Get Book Here

Book Description
Brassica oilseeds are one of the few edible oil crops that can be cultivated in the temperate zones of the world, at higher elevations and as winter crops. This comprehensive volume encompasses research and practice in the production and use of Brassica oilseeds. The first section considers each aspect of the field crop including the importance of plant breeding and biotechnology. The impact of the crop on the surrounding environment is also discussed. The second section covers utilization. This is especially important as rapeseed oil has gained high nutritional status in recent years, and this is considered in relation to the human diet. The use of the meal by-product for animal feeds is also discussed. The oil is also used for industrial purposes and derivatives are used in pharmaceuticals and cosmetics. The increased interest in the production and use of biodiesel from Brassica oilseeds is reflected by the inclusion of a chapter on this topic. The contributors are leading specialists from North America, Europe and Australia. The book provides a complete reference resource for students, researchers and practitioners within the disciplines of crop production, plant and food sciences

Accelerated Plant Breeding, Volume 4

Accelerated Plant Breeding, Volume 4 PDF Author: Satbir Singh Gosal
Publisher: Springer Nature
ISBN: 3030811077
Category : Technology & Engineering
Languages : en
Pages : 549

Get Book Here

Book Description
Plant improvement has shifted its focus from yield, quality and disease resistance to factors that will enhance commercial export, such as early maturity, shelf life and better processing quality. Conventional plant breeding methods aiming at the improvement of a self-pollinating crop usually take 10-12 years to develop and release of the new variety. During the past 10 years, significant advances have been made and accelerated methods have been developed for precision breeding and early release of crop varieties. This book focuses on the accelerated breeding technologies that have been adopted for major oil crops. It summarizes concepts dealing with germplasm enhancement and development of improved varieties based on innovative methodologies that include doubled haploidy, marker assisted selection, marker assisted background selection, genetic mapping, genomic selection, high-throughput genotyping, high-throughput phenotyping, mutation breeding, reverse breeding, transgenic breeding, shuttle breeding, speed breeding, low cost high-throughput field phenotyping, etc. This edited volume is therefore an excellent reference on accelerated development of improved crop varieties.

Brassica Improvement

Brassica Improvement PDF Author: Shabir Hussain Wani
Publisher: Springer Nature
ISBN: 3030346943
Category : Technology & Engineering
Languages : en
Pages : 261

Get Book Here

Book Description
Global population is mounting at an alarming stride to surpass 9.3 billion by 2050, whereas simultaneously the agricultural productivity is gravely affected by climate changes resulting in increased biotic and abiotic stresses. The genus Brassica belongs to the mustard family whose members are known as cruciferous vegetables, cabbages or mustard plants. Rapeseed-mustard is world’s third most important source of edible oil after soybean and oil palm. It has worldwide acceptance owing to its rare combination of health promoting factors. It has very low levels of saturated fatty acids which make it the healthiest edible oil that is commonly available. Apart from this, it is rich in antioxidants by virtue of tocopherols and phytosterols presence in the oil. The high omega 3 content reduces the risk of atherosclerosis/heart attack. Conventional breeding methods have met with limited success in Brassica because yield and stress resilience are polygenic traits and are greatly influenced by environment. Therefore, it is imperative to accelerate the efforts to unravel the biochemical, physiological and molecular mechanisms underlying yield, quality and tolerance towards biotic and abiotic stresses in Brassica. To exploit its fullest potential, systematic efforts are needed to unlock the genetic information for new germplasms that tolerate initial and terminal state heat coupled with moisture stress. For instance, wild relatives may be exploited in developing introgressed and resynthesized lines with desirable attributes. Exploitation of heterosis is another important area which can be achieved by introducing transgenics to raise stable CMS lines. Doubled haploid breeding and marker assisted selection should be employed along with conventional breeding. Breeding programmes aim at enhancing resource use efficiency, especially nutrient and water as well as adoption to aberrant environmental changes should also be considered. Biotechnological interventions are essential for altering the biosynthetic pathways for developing high oleic and low linolenic lines. Accordingly, tools such as microspore and ovule culture, embryo rescue, isolation of trait specific genes especially for aphid, Sclerotinia and alternaria blight resistance, etc. along with identification of potential lines based on genetic diversity can assist ongoing breeding programmes. In this book, we highlight the recent molecular, genetic and genomic interventions made to achieve crop improvement in terms of yield increase, quality and stress tolerance in Brassica, with a special emphasis in Rapeseed-mustard.